• Barret, B., De Mazière M. , and Demoulin P. , 2002: Retrieval and characterization of ozone profiles from solar infrared spectra at the Jungfraujoch. J. Geophys. Res., 107 .4788, doi:10.1029/2001JD001298.

    • Search Google Scholar
    • Export Citation
  • Bassford, M. R., McLinden C. A. , and Strong K. , 2001: Zenith-sky observations of stratospheric gases: The sensitivity of air mass factors to geophysical parameters and the influence of tropospheric clouds. J. Quant. Spectrosc. Radiat. Transfer, 68 , 657677.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bassford, M. R., Strong K. , McLinden C. A. , and McElroy C. T. , 2005: Ground-based measurements of ozone and NO2 during MANTRA 1998 using a new zenith-sky spectrometer. Atmos.–Ocean, 43 , 325338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bernardo, C., and Griffith D. W. T. , 2005: Fourier transform spectrometer instrument lineshape (ILS) retrieval by Fourier deconvolution. J. Quant. Spectrosc. Radiat. Transfer, 95 , 141150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carli, B., and Coauthors, 2004: First results of MIPAS/ENVISAT with operational level 2 code. Adv. Space Res., 33 , 10121019.

  • Coffey, M. T., Goldman A. , Hannigan J. W. , Mankin W. G. , Schoenfeld W. G. , Rinsland C. P. , Bernardo C. , and Griffith D. W. T. , 1998: Improved vibration-rotation (0-1) HBr line parameters for validating high resolution infrared atmospheric spectra measurements. J. Quant. Spectrosc. Radiat. Transfer, 60 , 863867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Connor, B. J., Jones N. B. , Wood S. W. , Keys J. G. , Rinsland C. P. , and Murcray F. J. , 1996: Retrieval of HCl and HNO3 profiles from ground-based FTIR data using SFIT2. Proc. XVIII Quadrennial Ozone Symp., L’Aquila, Italy, International Ozone Commission, 485–488.

  • Gallery, W. O., Kneizys F. X. , and Clough S. A. , 1983: Air mass computer program for atmospheric transmittance/radiance calculation: FSCATM. Environmental Research Paper ERP-828/AFGL-TR-83-0065, Air Force Geophysical Laboratory, Hanscom AFB, MA, 145 pp.

    • Crossref
    • Export Citation
  • Goldman, A., and Coauthors, 1999: Network for the Detection of Stratospheric Change Fourier transform infrared intercomparison at Table Mountain Facility, November 1996. J. Geophys. Res., 104 , D23. 3048130503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goorvitch, D., 2000: Calculation of instrument functions. J. Quant. Spectrosc. Radiat. Transfer, 67 , 253257.

  • Griffith, D. W. T., Jones N. B. , McNamara B. , Paton Walsh C. , Bell W. , and Bernardo C. , 2003: Intercomparison of NDSC ground-based solar FTIR measurements of atmospheric gases at Lauder, New Zealand. J. Atmos. Oceanic Technol., 20 , 11381153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hase, F., Blumenstock T. , and Paton-Walsh C. , 1999: Analysis of the instrumental line shape of high-resolution Fourier transform IR spectrometers with gas cell measurements and new retrieval software. Appl. Opt., 38 , 34173422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hase, F., Hannigan J. W. , Coffey M. T. , Goldman A. , Höpfner M. , Jones N. B. , Rinsland C. P. , and Wood S. W. , 2004: Intercomparison of retrieval codes used for the analysis of high-resolution, ground-based FTIR measurements. J. Quant. Spectrosc. Radiat. Transfer, 87 , 2552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurylo, M. J., and Zander R. J. , 2000: The NDSC—Its status after ten years of operation. Proc. 19th Quadrennial Ozone Symp., Sapporo, Japan, Hokkaido University, 167–168.

  • Llewellyn, E. J., and Coauthors, 2004: The OSIRIS instrument on the Odin spacecraft. Can. J. Phys., 82 , 411422.

  • McElroy, C. T., 1995: A spectroradiometer for the measurement of direct and scattered solar irradiance from on-board the NASA ER-2 high-altitude research aircraft. Geophys. Res. Lett., 22 , 13611364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meier, A., Goldman A. , Manning P. S. , Stephen T. M. , Rinsland C. P. , Jones N. B. , and Wood S. W. , 2004: Improvements to air mass calculations for ground-based infrared measurements. J. Quant. Spectrosc. Radiat. Transfer, 83 , 109113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meier, A., and Coauthors, 2005: Evidence of reduced measurement uncertainties from an FTIR instrument intercomparison at Kiruna, Sweden. J. Quant. Spectrosc. Radiat. Transfer, 96 , 7584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mikhailenko, S., Barbe A. , and Tyuterev V. L. G. , 2002: Extended analysis of line positions and intensities of ozone bands in the 2900-3400 cm−1 region. J. Mol. Spectrosc., 215 , 2941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murtagh, D., and Coauthors, 2002: An overview of the Odin atmospheric mission. Can. J. Phys., 80 , 309318.

  • Park, J. H., 1982: Effect of interferogram smearing on atmospheric limb sounding by Fourier transform spectroscopy. Appl. Opt., 21 , 13561366.

  • Paton Walsh, C., and Coauthors, 1997: An uncertainty budget for ground-based Fourier transform infrared column measurements of HCl, HF, N2O, and HNO3 deduced from results of side-by-side instrument intercomparisons. J. Geophys. Res., 102 , D7. 88678873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petelina, S. V., and Coauthors, 2005: Validation of ACE-FTS stratospheric ozone profiles against Odin/OSIRIS measurements. Geophys. Res. Lett., 32 .L15S06, doi:10.1029/2005GL022377.

    • Search Google Scholar
    • Export Citation
  • Pougatchev, N. S., Connor B. J. , and Rinsland C. P. , 1995: Infrared measurements of the ozone vertical distribution above Kitt Peak. J. Geophys. Res., 100 , D8. 1668916697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rinsland, C. P., and Coauthors, 1998: Northern and Southern Hemisphere ground-based infrared spectroscopic measurements of tropospheric carbon monoxide and thane. J. Geophys. Res., 103 , D21. 2819728217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rinsland, C. P., Meier A. , Griffith D. W. T. , and Chiou L. S. , 2001: Ground-based measurements of tropospheric CO, C2H6, and HCN from Australia at 34°S latitude during 1997-1998. J. Geophys. Res., 106 , D18. 2091320924.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rinsland, C. P., and Coauthors, 2002a: Multiyear infrared solar spectroscopic measurements of HCN, CO, C2H6, and C2H2 tropospheric columns above Lauder, New Zealand (45°S latitude). J. Geophys. Res., 107 .4185, doi:10.1029/2001JD001150.

    • Search Google Scholar
    • Export Citation
  • Rinsland, C. P., and Coauthors, 2002b: Ground-based infrared spectroscopic measurements of carbonyl sulfide: Free tropospheric trends from a 24-year time series of solar absorption measurements. J. Geophys. Res., 107 .4657, doi:10.1029/2002JD002522.

    • Search Google Scholar
    • Export Citation
  • Rinsland, C. P., and Coauthors, 2003: Long-term trends of inorganic chlorine from ground-based infrared solar spectra: Past increases and evidence for stabilization. J. Geophys. Res., 108 .4252, doi:10.1029/2002JD003001.

    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 1976: Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Rev. Geophys. Space Phys., 14 , 609624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 1990: Characterization and error analysis of profiles retrieved from remote sounding measurements. J. Geophys. Res., 95 , D5. 55875595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., 2000: Inverse Methods For Atmospheric Sounding: Theory and Practice. World Scientific, 238 pp.

  • Rodgers, C. D., and Connor B. J. , 2003: Intercomparison of remote sounding instruments. J. Geophys. Res., 108 .4116, doi:10.1029/2002JD002299.

    • Search Google Scholar
    • Export Citation
  • Rothman, L. S., and Coauthors, 2003: The HITRAN molecular spectroscopic database: Edition of 2000 including updates through 2001. J. Quant. Spectrosc. Radiat. Transfer, 82 , 544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rothman, L. S., and Coauthors, 2005: The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer, 96 , 139204.

  • Russell J. M. III, , and Coauthors, 1993: The Halogen Occultation Experiment. J. Geophys. Res., 98 , D6. 1077710797.

  • Schneider, M., Blumenstock T. , Hase F. , Höpfner M. , Cuevas E. , Redondas A. , and Sancho J. M. , 2005a: Ozone profiles and total column amounts derived at Izaña, Tenerife Island, from FTIR solar absorption spectra, and its validation by an intercomparison to ECC-sonde and Brewer spectrometer measurements. J. Quant. Spectrosc. Radiat. Transfer, 91 , 245274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, M., and Coauthors, 2005b: Subtropical trace gas profiles determined by ground-based FTIR spectroscopy at Izaña (28° N, 16° W): Five-year record, error analysis, and comparison with 3-D CTMs. Atmos. Chem. Phys., 5 , 153167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Savigny, C., and Coauthors, 2003: Stratospheric ozone profiles retrieved from limb scattered sunlight radiance spectra measured by the OSIRIS instrument on the Odin satellite. Geophys. Res. Lett., 30 .1755, doi:10.1029/2002GL016401.

    • Search Google Scholar
    • Export Citation
  • Zander, R., and Coauthors, 1994: Secular trend and seasonal variability of the column abundance of N2O above the Jungfraujoch station determined from IR solar spectra. J. Geophys. Res., 99 , D8. 1674516756.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 6 6 6
PDF Downloads 2 2 2

Ground-Based Solar Absorption FTIR Spectroscopy: Characterization of Retrievals and First Results from a Novel Optical Design Instrument at a New NDACC Complementary Station

View More View Less
  • 1 Department of Physics, University of Toronto, Toronto, Ontario, Canada
  • | 2 Department of Chemistry, University of Wollongong, Wollongong, New South Wales, Australia
Restricted access

Abstract

The authors describe the optical design of a high-resolution Fourier Transform Spectrometer (FTS), which serves as the primary instrument at the University of Toronto Atmospheric Observatory (TAO). The FTS is dedicated to ground-based infrared solar absorption atmospheric measurements from Toronto, Ontario, Canada. Instrument performance is discussed in terms of instrumental line shape (ILS) and phase error and modulation efficiency as a function of optical path difference. Typical measurement parameters are presented together with retrieval parameters used to derive total and partial column concentrations of ozone. Retrievals at TAO employ the optimal estimation method (OEM), and some impacts of the necessary a priori constraints are examined. In March 2004, after participating in a retrieval algorithm user intercomparison exercise, the TAO FTS was granted the status of a Complementary Observation Station within the international community of high-resolution FTS users in the Network for the Detection of Atmospheric Composition and Change (NDACC). During this exercise, average differences between total columns retrieved from the same spectra by different users were below 2.1% for O3, HCl, and N2O in the blind phase, and below 1% in the open phase, when all retrieval constraints were identical. Finally, a 2.5-yr time series of monthly mean stratospheric ozone columns agrees within 3% with those retrieved from Optical Spectrograph and Infrared Imager System (OSIRIS) measurements on board the Odin satellite, which is within the errors of both measurement platforms.

Corresponding author address: Aldona Wiacek, University of Toronto, Department of Physics, 60 St. George Street, Toronto, ON M5S 1A7, Canada. Email: aldona@atmosp.physics.utoronto.ca

Abstract

The authors describe the optical design of a high-resolution Fourier Transform Spectrometer (FTS), which serves as the primary instrument at the University of Toronto Atmospheric Observatory (TAO). The FTS is dedicated to ground-based infrared solar absorption atmospheric measurements from Toronto, Ontario, Canada. Instrument performance is discussed in terms of instrumental line shape (ILS) and phase error and modulation efficiency as a function of optical path difference. Typical measurement parameters are presented together with retrieval parameters used to derive total and partial column concentrations of ozone. Retrievals at TAO employ the optimal estimation method (OEM), and some impacts of the necessary a priori constraints are examined. In March 2004, after participating in a retrieval algorithm user intercomparison exercise, the TAO FTS was granted the status of a Complementary Observation Station within the international community of high-resolution FTS users in the Network for the Detection of Atmospheric Composition and Change (NDACC). During this exercise, average differences between total columns retrieved from the same spectra by different users were below 2.1% for O3, HCl, and N2O in the blind phase, and below 1% in the open phase, when all retrieval constraints were identical. Finally, a 2.5-yr time series of monthly mean stratospheric ozone columns agrees within 3% with those retrieved from Optical Spectrograph and Infrared Imager System (OSIRIS) measurements on board the Odin satellite, which is within the errors of both measurement platforms.

Corresponding author address: Aldona Wiacek, University of Toronto, Department of Physics, 60 St. George Street, Toronto, ON M5S 1A7, Canada. Email: aldona@atmosp.physics.utoronto.ca

Save