• Crawford, J., Shetter R. E. , Lefer B. , Cantrell C. , Junkermann W. , Madronich S. , and Calvert J. , 2003: Cloud impacts on UV spectral actinic flux observed during the International Photolysis Frequency Measurement and Model Intercomparison (IPMMI). J. Geophys. Res., 108 .8545, doi:10.1029/2002JD002731.

    • Search Google Scholar
    • Export Citation
  • Daumont, D., Brion J. , Charbonnier J. , and Malicet J. , 1992: Ozone UV spectroscopy. I. Absorption cross-sections at room temperature. J. Atmos. Chem., 15 , 145155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, G. D., and Monks P. S. , 2003: Performance of a single-monochromator diode array spectroradiometer for the determination of actinic flux and atmospheric photolysis frequencies. J. Geophys. Res., 108 .8546, doi:10.1029/2002JD002844.

    • Search Google Scholar
    • Export Citation
  • Ehhalt, D. H., 1999: Photooxidation of trace gases in the troposphere. Phys. Chem. Chem. Phys., 1 , 54015408.

  • Heard, D. E., and Pilling M. J. , 2003: Measurement of OH and HO2 in the troposphere. Chem. Rev., 103 , 51635198.

  • Hofzumahaus, A., Kraus A. , and Müller M. , 1999: Solar actinic spectroradiometry: A technique for measuring photolysis frequencies in the atmosphere. Appl. Opt., 38 , 44434460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jäkel, E., 2005: An airborne system for fast measurements of upwelling and downwelling spectral actinic flux densities. Ph.D. thesis, University of Leipzig, Leipzig, Germany, 129 pp.

    • Crossref
    • Export Citation
  • Jäkel, E., Wendisch M. , Kniffka A. , and Trautmann T. , 2005: Airborne system for fast measurements of upwelling and downwelling actinic flux densities. Appl. Opt., 44 , 434444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jäkel, E., Wendisch M. , and Lefer B. , 2006: Parameterization of ozone photolysis frequency in the lower troposphere using data from photodiode array detector measurements. J. Atmos. Chem., 54 .doi:10.1007/s10874-006-9014-1.

    • Search Google Scholar
    • Export Citation
  • Kurucz, R. L., 1992: Synthetic infrared spectra. Proc. 154th Symp. of the International Astronomical Union, Tucson, AZ, IAU, 523–531.

    • Crossref
    • Export Citation
  • Lefer, B. L., Hall S. R. , Cinquini L. , Shetter R. E. , Barrick J. D. , and Crawford J. H. , 2001: Comparison of airborne NO2 photolysis frequency measurements during PEM-Tropics B. J. Geophys. Res., 106 , 3264532656.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madronich, S., 1987: Photodissociation in the atmosphere: 1. Actinic flux and the effects of ground reflections and clouds. J. Geophys. Res., 92 , 97409752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madronich, S., and Weller G. , 1990: Numerical integration errors in calculated tropospheric photodissociation rate coefficients. J. Atmos. Chem., 10 , 289300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsumi, Y., Comes F. J. , Hancock G. , Hofzumahaus A. , Hynes A. J. , Kawasaki M. , and Ravishankara A. R. , 2002: Quantum yields for production of O(1D) in the ultraviolet photolysis of ozone: Recommendations based on evaluation of laboratory data. J. Geophys. Res., 107 .4024, doi:10.1029/2001JD000510.

    • Search Google Scholar
    • Export Citation
  • Mayer, B., and Kylling A. , 2005: Technical note: The libRadtran software package for radiative transfer calculations—Description and examples of use. Atmos. Chem. Phys., 5 , 19751997.

    • Search Google Scholar
    • Export Citation
  • Merienne, M. F., Jenouvrier A. , and Coquart B. , 1995: The NO2 absorption-spectrum: 1. Absorption cross-section at ambient-temperature in the 300–500 nm region. J. Atmos. Chem., 20 , 281297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monks, P. S., 2005: Gas-phase radical chemistry in the troposphere. Chem. Soc. Rev., 34 , 376395.

  • Pilewskie, P., and Coauthors, 2003: Solar spectral radiative forcing during the Southern African Regional Science Initiative. J. Geophys. Res., 108 .8486, doi:10.1029/2002JD002411.

    • Search Google Scholar
    • Export Citation
  • Seckmeyer, G., Erb R. , and Albold A. , 1996: Transmittance of a cloud is wavelength-dependent in the UV-range. Geophys. Res. Lett., 23 , 27532755.

  • Shetter, R. E., and Müller M. , 1999: Photolysis frequency measurements using actinic flux spectroradiometry during PEM-Tropics mission: Instrumentation description and some results. J. Geophys. Res., 104 , 56475661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slaper, H., Reinen H. A. J. M. , Blumthaler M. , Huber M. , and Luik F. , 1995: Comparing ground-level spectrally resolved solar UV measurements using various instruments: A technique resolving effects of wavelength shifts and slit width. Geophys. Res. Lett., 22 , 27212724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troe, J., 2000: Are primary quantum yields of NO2 photolysis at λ ≤ 398 nm smaller than unity? Zeit. Phys. Chem., 214 , 573581.

  • van der Leun, J. C., Teng X. , and Tevini M. , 1998: Environmental effects of ozone depletion: 1998 assessment. J. Photochem. Photobiol., 46B , 1108.

    • Search Google Scholar
    • Export Citation
  • Webb, A. R., and et al., 2002: Measuring spectral actinic flux and irradiance: Experimental results from the Actinic Flux Determination from Measurements of Irradiance (ADMIRA) project. J. Atmos. Oceanic Technol., 19 , 10491062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wendisch, M., Müller D. , Schell D. , and Heintzenberg J. , 2001: An airborne spectral albedometer with active horizontal stabilization. J. Atmos. Oceanic Technol., 18 , 18561866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wendisch, M., and Coauthors, 2004: Airborne measurements of areal spectral surface albedo over different sea and land surfaces. J. Geophys. Res., 109 .D08203, doi:10.1029/2003JD004392.

    • Search Google Scholar
    • Export Citation
  • Wendisch, M., and Coauthors, 2005: Impact of cirrus crystal shape on solar spectral irradiance: A case study for subtropical cirrus. J. Geophys. Res., 110 .D03202, doi:10.1029/2004JD005294.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 12 12 12
PDF Downloads 8 8 8

A CCD Spectroradiometer for Ultraviolet Actinic Radiation Measurements

View More View Less
  • 1 Leibniz-Institute for Tropospheric Research (IfT), Leipzig, Germany
  • | 2 Innsbruck Medical University, Innsbruck, Austria
  • | 3 Meteorologie Consult GmbH (metcon), Königstein, Germany
  • | 4 University of Manchester, Manchester, United Kingdom
Restricted access

Abstract

A new spectroradiometer for spectral measurements of ultraviolet (UV) atmospheric radiation (290–400 nm) using a charge coupled device (CCD) as a detector is introduced. The instrument development is motivated by the need for measurements with (a) high accuracy in the UV-B spectral range (290–315 nm) for photochemistry applications and (b) high temporal resolution in quickly changing atmospheric conditions such as partial cloud cover. The new CCD instrument is mainly intended for airborne use. It allows fast data collection (<300 ms time resolution for each spectrum) with improved sensitivity in the UV spectral range. The instrumental setup and its characterization in terms of stray light, dark current, noise, and detection limits are described and compared to a spectroradiometer with a photodiode array (PDA) detector. The new CCD spectroradiometer has a one order of magnitude greater sensitivity than the PDA-based spectroradiometer. However, the stray light of the CCD instrument is wavelength dependent, which requires a more complicated data evaluation procedure than the PDA instrument. Comparison with other UV spectroradiometers (a PDA spectroradiometer and two ground-based double monochromators) shows the advantages of the CCD system for UV-B measurements of actinic flux densities and photolysis frequencies of ozone and nitrogen dioxide, and the improved performance compared to PDA spectroradiometers.

* Current affiliation: Institute for Atmospheric Physics, University of Mainz, Mainz, Germany

Corresponding author address: Evelyn Jäkel, Institute for Atmospheric Physics, University of Mainz, Becherweg 21, 55099 Mainz, Germany. Email: jaekel@uni-mainz.de

Abstract

A new spectroradiometer for spectral measurements of ultraviolet (UV) atmospheric radiation (290–400 nm) using a charge coupled device (CCD) as a detector is introduced. The instrument development is motivated by the need for measurements with (a) high accuracy in the UV-B spectral range (290–315 nm) for photochemistry applications and (b) high temporal resolution in quickly changing atmospheric conditions such as partial cloud cover. The new CCD instrument is mainly intended for airborne use. It allows fast data collection (<300 ms time resolution for each spectrum) with improved sensitivity in the UV spectral range. The instrumental setup and its characterization in terms of stray light, dark current, noise, and detection limits are described and compared to a spectroradiometer with a photodiode array (PDA) detector. The new CCD spectroradiometer has a one order of magnitude greater sensitivity than the PDA-based spectroradiometer. However, the stray light of the CCD instrument is wavelength dependent, which requires a more complicated data evaluation procedure than the PDA instrument. Comparison with other UV spectroradiometers (a PDA spectroradiometer and two ground-based double monochromators) shows the advantages of the CCD system for UV-B measurements of actinic flux densities and photolysis frequencies of ozone and nitrogen dioxide, and the improved performance compared to PDA spectroradiometers.

* Current affiliation: Institute for Atmospheric Physics, University of Mainz, Mainz, Germany

Corresponding author address: Evelyn Jäkel, Institute for Atmospheric Physics, University of Mainz, Becherweg 21, 55099 Mainz, Germany. Email: jaekel@uni-mainz.de

Save