• Bevis, M., Businger S. , Herring T. A. , Rocken C. , Anthes R. A. , and Ware R. H. , 1992: GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res., 97 , D14. 1578715801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bevis, M., Businger S. , Chiswell S. , Herring T. A. , Anthes R. A. , Rocken C. , and Ware R. H. , 1994: GPS meteorology: Mapping zenith wet delays onto precipitable water. J. Appl. Meteor., 33 , 379386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackmore, W. H., and Taubvurtzel B. , 1999: Environmental chamber tests on NWS radiosonde humidity sensors. Preprints, 11th Symp. on Meteorological Observations and Instrumentation, Dallas, TX, Amer. Meteor. Soc., 259–262.

  • Cimini, D., Gasiewski A. J. , Klein M. , Westwater E. R. , Leuski V. , and Dowlatshahi S. , 2005: Ground-based scanning radiometer measurements during the Water Vapor Intensive Operational Period 2004: A valuable new dataset for the study of the Arctic atmosphere. Proc. 15th Atmospheric Radiation Measurement (ARM) Science Team Meeting, Daytona Beach, FL, U.S. Department of Energy. [Available online at http://www.arm.gov/publications/proceedings/conf15/extended_abs/cimini_d.pdf.].

  • Clough, S. A., Brown P. D. , Turner D. D. , Shippert T. R. , Liljegren J. C. , Tobin D. C. , Revercomb H. E. , and Knuteson R. O. , 1999: Effect on the calculated spectral surface radiances due to MWR scaling of sonde water vapor profiles. Proc. Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting, Washington, DC, U.S. Department of Energy. [Available online at http://www.arm.gov/publications/proceedings/conf09/extended_abs/clough_sa.pdf.].

  • Clough, S. A., Shephard M. W. , Mlawer E. J. , Delamere J. S. , Iacono M. J. , Cady-Pereira K. , Boukabara S. , and Brown P. D. , 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91 , 233244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, J. L., Herring L. T. A. , Shapiro I. I. , Rogers A. E. , and Elgered G. , 1985: Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Sci., 20 , 15931607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elgered, G., 1993: Tropospheric radio-path delay from ground-based microwave radiometry. Atmospheric Remote Sensing by Microwave Radiometry, M. A. Janssen, Ed., J. Wiley & Sons, 218–258.

    • Search Google Scholar
    • Export Citation
  • Ferrare, R. A., and Coauthors, 2004: Characterization of upper-troposphere water vapor measurements during AFWEX using LASE. J. Atmos. Oceanic Technol., 21 , 17901808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujiwara, M., Shiotani M. , Hasebe F. , Vömel H. , Oltmans S. J. , Ruppert P. W. , Horinouchi T. , and Tsuda T. , 2003: Performance of the Meteolabor “Snow White” chilled-mirror hygrometer in the tropical troposphere: Comparisons with the Vaisala RS80 A/H-Humicap sensors. J. Atmos. Oceanic Technol., 20 , 15341542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutman, S. I., Sahm S. R. , Benjamin S. G. , Schwartz B. E. , Holub K. L. , Stewart J. Q. , and Smith T. L. , 2004a: Rapid retrieval and assimilation of ground based gps precipitable water observations at the NOAA Forecast Systems Laboratory: Impact on weather forecasts. J. Meteor. Soc. Japan, 82 , 1B. 351360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutman, S. I., Sahm S. R. , Benjamin S. G. , and Smith T. L. , 2004b: GPS water vapor observation errors. Preprints, Eighth Symp. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Seattle, WA, Amer. Meteor. Soc., CD-ROM, 8.3.

  • Han, Y., and Westwater E. R. , 2000: Analysis and improvement of tipping calibration for ground-based microwave radiometers. IEEE Trans. Geosci. Remote Sens., 38 , 12601276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herring, T. A., King R. W. , and McClusky S. C. , 2006: GPS Analysis at MIT (GAMIT) reference manual, release 10.3. Massachusetts Institute of Technology, 182 pp.

  • Hewison, T., Cimini D. , Martin L. , Gaffard C. , and Nash J. , 2006: Validating clear air absorption models using ground-based microwave radiometers and vice-versa. Meteor. Z., 15 , 2736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., and Coauthors, 2001: The aerosonde robotic aircraft: A new paradigm for environmental observations. Bull. Amer. Meteor. Soc., 82 , 889901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liljegren, J. C., 2000: Automatic self-calibration of ARM microwave radiometers. Microwave Radiometry and Remote Sensing of the Earth’s Surface and Atmosphere, P. Pampaloni and S. Paloscia, Eds., VSP Press, 433–443.

    • Search Google Scholar
    • Export Citation
  • Liljegren, J. C., and Lesht B. M. , 2004: Preliminary results with the twelve-channel microwave radiometer profiler at the North Slope of Alaska Climate Research Facility. Proc. 14th Atmospheric Radiation Measurement (ARM) Science Team Meeting, Albuquerque, NM, U.S. Department of Energy. [Available online at http://www.arm.gov/publications/proceedings/conf14/extended_abs/liljegren-jc.pdf.].

  • Liljegren, J. C., Boukabara S-A. , Cady-Pereira K. , and Clough S. A. , 2005: The effect of the half-width of the 22-GHz water vapor line on retrievals of temperature and water vapor profiles with a twelve-channel microwave radiometer. IEEE Trans. Geosci. Remote Sens., 43 , 11021108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mattioli, V., Westwater E. R. , Gutman S. I. , and Morris V. R. , 2005a: Forward model studies of water vapor using scanning microwave radiometers, global positioning system, and radiosondes during the Cloudiness Inter-Comparison Experiment. IEEE Trans. Geosci. Remote Sens., 43 , 10121021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mattioli, V., Westwater E. R. , Cimini D. , Liljegren J. S. , Lesht B. M. , Gutman S. I. , and Schmidlin F. , 2005b: Analysis of radiosonde and precipitable water vapor data from the 2004 North Slope of Alaska Arctic Winter Radiometric Experiment. Proc. 15th Atmospheric Radiation Measurement (ARM) Science Team Meeting, Daytona Beach, FL, U.S. Department of Energy. [Available online at http://www.arm.gov/publications/proceedings/conf15/extended_abs/mattioli_v.pdf.].

  • Miloshevich, L. M., Vömel H. , Whiteman D. N. , Lesht B. M. , Schmidlin F. J. , and Russo F. , 2006: Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation. J. Geophys. Res., 111 .D09S10, doi:10.1029/2005JD006083.

    • Search Google Scholar
    • Export Citation
  • Niell, A. E., 1996: Global mapping functions for the atmosphere delay at radio wavelengths. J. Geophys. Res., 101 , B2. 32273246.

  • Paukkunen, A., Antikainen V. , and Jauhiainen H. , 2001: Accuracy and performance of the new Vaisala RS90 radiosonde in operational use. Preprints, 11th Symp. on Meteorological Observations and Instrumentation, Albuquerque, NM, Amer. Meteor. Soc., CD-ROM, 4.5.

  • Racette, P. E., and Coauthors, 2005: Measurement of low amounts of precipitable water vapor using ground-based millimeterwave radiometry. J. Atmos. Oceanic Technol., 22 , 317337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Revercomb, H. E., and Coauthors, 2003: The ARM Programs’s water vapor intensive observation periods: Overview, initial accomplishments, and future challenges. Bull. Amer. Meteor. Soc., 84 , 217236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saastamoinen, J., 1972: Introduction to practical computation of astronomical refraction. Bull. Geod., 106 , 383397.

  • Schmidlin, F. J., and Northam E. T. , 2005: Standards for evaluating radiosonde measurements. Preprints, Ninth Symp. on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface, San Diego, CA, Amer. Meteor. Soc., CD-ROM, 11.6.

  • Schmidlin, F. J., Luers J. K. , and Huffman P. D. , 1986: Preliminary estimates of radiosonde thermistor errors. NASA Tech. Paper 2637, Wallops Island, VA, 19 pp.

  • Turner, D. D., and Goldsmith J. E. M. , 1999: Twenty-four-hour Raman lidar water vapor measurements during the Atmospheric Radiation Measurement Program’s 1996 and 1997 water vapor intensive observation periods. J. Atmos. Oceanic Technol., 16 , 10621076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., Lesht B. M. , Clough S. A. , Liljegren J. C. , Revercomb H. E. , and Tobin D. C. , 2003: Dry bias and variability in Vaisala RS80-H radiosondes: The ARM experience. J. Atmos. Oceanic Technol., 20 , 117132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vömel, H., Fujiwara M. , Shiotani M. , Hasebe F. , Oltmans S. J. , and Barnes J. E. , 2003: The behavior of the Snow White chilled-mirror hygrometer in extremely dry conditions. J. Atmos. Oceanic Technol., 20 , 15601567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., Cole H. L. , Carlson D. J. , Miller E. R. , Beierle K. , Paukkunen A. , and Laine T. K. , 2002: Correction of humidity measurement errors from the Vaisala RS80 radiosonde—Application to TOGA COARE data. J. Atmos. Oceanic Technol., 19 , 9811002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., Carlson D. J. , Parsons D. B. , Hock T. F. , Lauritsen D. , Cole H. L. , Beierle K. , and Chamberlain E. , 2003: Performance of operational radiosonde humidity sensors in direct comparison with a chilled mirror dew-point hygrometer and its climate implication. Geophys. Res. Lett., 30 .1860, doi:10.1029/2003GL016985.

    • Search Google Scholar
    • Export Citation
  • Wang, J., Zhang L. , and Dai A. , 2005: Global estimates of water-vapor-weighted mean temperature of the atmosphere for GPS applications. J. Geophys. Res., 110 .D21101, doi:10.1029/2005JD006215.

    • Search Google Scholar
    • Export Citation
  • Ware, R. H., and Coauthors, 2000: SuomiNet: A real-time national GPS network for atmospheric research and education. Bull. Amer. Meteor. Soc., 81 , 677694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westwater, E. R., 1997: Remote sensing of tropospheric temperature and moisture by integrated observing systems. Bull. Amer. Meteor. Soc., 78 , 19912006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westwater, E. R., Stankov B. , Cimini D. , Han Y. , Shaw J. A. , Lesht B. M. , and Long C. N. , 2003: Radiosonde humidity soundings and microwave radiometers during Nauru99. J. Atmos. Oceanic Technol., 20 , 953971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westwater, E. R., and Coauthors, 2004: The 2004 North Slope of Alaska Arctic Winter Radiometric Experiment. Proc. 14th Atmospheric Radiation Measurement (ARM) Science Team Meeting, Albuquerque, NM, U.S. Department of Energy. [Available online at http://www.arm.gov/publications/proceedings/conf14/extended_abs/westwater-er.pdf.].

  • Westwater, E. R., and Coauthors, 2005: Microwave and millimeter wave forward modeling results from the 2004 North Slope of Alaska Arctic Winter Radiometric Experiment. Proc. 15th Atmospheric Radiation Measurement (ARM) Science Team Meeting, Daytona Beach, FL, U.S. Department of Energy. [Available online at http://www.arm.gov/publications/proceedings/conf15/extended_abs/westwater_er.pdf.].

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10 10 10
PDF Downloads 5 5 5

Analysis of Radiosonde and Ground-Based Remotely Sensed PWV Data from the 2004 North Slope of Alaska Arctic Winter Radiometric Experiment

View More View Less
  • 1 Dipartimento di Ingegneria Elettronica e dell’Informazione, Università di Perugia, Perugia, Italy
  • | 2 Science and Technology Corporation, Hampton, Virginia
  • | 3 Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/ESRL Physical Sciences Division, Boulder, Colorado
  • | 4 Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA/ESRL Physical Sciences Division, Boulder, Colorado
  • | 5 Institute of Methodologies for Environmental Analysis, National Research Council, Tito Scalo, Italy
  • | 6 DOE/Argonne National Laboratory, Argonne, Illinois
  • | 7 NOAA/Forecast Systems Laboratory, Boulder, Colorado
  • | 8 NASA Goddard Space Flight Center, Wallops Flight Facility, Wallops Island, Virginia
Restricted access

Abstract

During 9 March–9 April 2004, the North Slope of Alaska Arctic Winter Radiometric Experiment was conducted at the Atmospheric Radiation Measurement Program’s (ARM) “Great White” field site near Barrow, Alaska. The major goals of the experiment were to compare microwave and millimeter wavelength radiometers and to develop forward models in radiative transfer, all with a focus on cold (temperature from 0° to −40°C) and dry [precipitable water vapor (PWV) < 0.5 cm] conditions. To supplement the remote sensors, several radiosonde packages were deployed: Vaisala RS90 launched at the ARM Duplex and at the Great White and Sippican VIZ-B2 operated by the NWS. In addition, eight dual-radiosonde launches were conducted at the Duplex with Vaisala RS90 and Sippican GPS Mark II, the latter one modified to include a chilled mirror humidity sensor. Temperature comparisons showed a nighttime bias between VIZ-B2 and RS90, which reached 3.5°C at 30 hPa. Relative humidity comparisons indicated better than 5% average agreement between the RS90 and the chilled mirror. A bias of about 20% for the upper troposphere was found in the VIZ-B2 and the Mark II measurements relative to both RS90 and the chilled mirror.

Comparisons in PWV were made between a microwave radiometer, a microwave profiler, a global positioning system receiver, and the radiosonde types. An RMS agreement of 0.033 cm was found between the radiometer and the profiler and better than 0.058 cm between the radiometers and GPS. RS90 showed a daytime dry bias on PWV of about 0.02 cm.

Corresponding author address: Vinia Mattioli, DIEI, Università di Perugia, via G. Duranti 93, 06125 Perugia, Italy. Email: vinia.mattioli@diei.unipg.it

Abstract

During 9 March–9 April 2004, the North Slope of Alaska Arctic Winter Radiometric Experiment was conducted at the Atmospheric Radiation Measurement Program’s (ARM) “Great White” field site near Barrow, Alaska. The major goals of the experiment were to compare microwave and millimeter wavelength radiometers and to develop forward models in radiative transfer, all with a focus on cold (temperature from 0° to −40°C) and dry [precipitable water vapor (PWV) < 0.5 cm] conditions. To supplement the remote sensors, several radiosonde packages were deployed: Vaisala RS90 launched at the ARM Duplex and at the Great White and Sippican VIZ-B2 operated by the NWS. In addition, eight dual-radiosonde launches were conducted at the Duplex with Vaisala RS90 and Sippican GPS Mark II, the latter one modified to include a chilled mirror humidity sensor. Temperature comparisons showed a nighttime bias between VIZ-B2 and RS90, which reached 3.5°C at 30 hPa. Relative humidity comparisons indicated better than 5% average agreement between the RS90 and the chilled mirror. A bias of about 20% for the upper troposphere was found in the VIZ-B2 and the Mark II measurements relative to both RS90 and the chilled mirror.

Comparisons in PWV were made between a microwave radiometer, a microwave profiler, a global positioning system receiver, and the radiosonde types. An RMS agreement of 0.033 cm was found between the radiometer and the profiler and better than 0.058 cm between the radiometers and GPS. RS90 showed a daytime dry bias on PWV of about 0.02 cm.

Corresponding author address: Vinia Mattioli, DIEI, Università di Perugia, via G. Duranti 93, 06125 Perugia, Italy. Email: vinia.mattioli@diei.unipg.it

Save