Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth’s Radiant Energy System Instrument on the Terra Satellite. Part II: Validation

Norman G. Loeb Center for Atmospheric Sciences, Hampton University, Hampton, Virginia

Search for other papers by Norman G. Loeb in
Current site
Google Scholar
PubMed
Close
,
Seiji Kato Center for Atmospheric Sciences, Hampton University, Hampton, Virginia

Search for other papers by Seiji Kato in
Current site
Google Scholar
PubMed
Close
,
Konstantin Loukachine Science Applications International Corporation, Hampton, Virginia

Search for other papers by Konstantin Loukachine in
Current site
Google Scholar
PubMed
Close
,
Natividad Manalo-Smith Analytical Services and Materials, Hampton, Virginia

Search for other papers by Natividad Manalo-Smith in
Current site
Google Scholar
PubMed
Close
, and
David R. Doelling Analytical Services and Materials, Hampton, Virginia

Search for other papers by David R. Doelling in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Errors in top-of-atmosphere (TOA) radiative fluxes from the Clouds and the Earth’s Radiant Energy System (CERES) instrument due to uncertainties in radiance-to-flux conversion from CERES Terra angular distribution models (ADMs) are evaluated through a series of consistency tests. These tests show that the overall bias in regional monthly mean shortwave (SW) TOA flux is less than 0.2 W m−2 and the regional RMS error ranges from 0.70 to 1.4 W m−2. In contrast, SW TOA fluxes inferred using theoretical ADMs that assume clouds are plane parallel are overestimated by 3–4 W m−2 and exhibit a strong latitudinal dependence. In the longwave (LW), the bias error ranges from 0.2 to 0.4 W m−2 and regional RMS errors remain smaller than 0.7 W m−2. Global mean albedos derived from ADMs developed during the Earth Radiation Budget Experiment (ERBE) and applied to CERES measurements show a systematic increase with viewing zenith angle of 4%–8%, while albedos from the CERES Terra ADMs show a smaller increase of 1%–2%. The LW fluxes from the ERBE ADMs show a systematic decrease with viewing zenith angle of 2%–2.4%, whereas fluxes from the CERES Terra ADMs remain within 0.7%–0.8% at all angles. Based on several months of multiangle CERES along-track data, the SW TOA flux consistency between nadir- and oblique-viewing zenith angles is generally 5% (<17 W m−2) over land and ocean and 9% (26 W m−2) in polar regions, and LW TOA flux consistency is approximate 3% (7 W m−2) over all surfaces. Based on these results and a theoretically derived conversion between TOA flux consistency and TOA flux error, the best estimate of the error in CERES TOA flux due to the radiance-to-flux conversion is 3% (10 W m−2) in the SW and 1.8% (3–5 W m−2) in the LW. Monthly mean TOA fluxes based on ERBE ADMs are larger than monthly mean TOA fluxes based on CERES Terra ADMs by 1.8 and 1.3 W m−2 in the SW and LW, respectively.

Corresponding author address: Dr. Norman G. Loeb, NASA Langley Research Center, MS 420, Hampton, VA 23681-2199. Email: n.g.loeb@larc.nasa.gov

Abstract

Errors in top-of-atmosphere (TOA) radiative fluxes from the Clouds and the Earth’s Radiant Energy System (CERES) instrument due to uncertainties in radiance-to-flux conversion from CERES Terra angular distribution models (ADMs) are evaluated through a series of consistency tests. These tests show that the overall bias in regional monthly mean shortwave (SW) TOA flux is less than 0.2 W m−2 and the regional RMS error ranges from 0.70 to 1.4 W m−2. In contrast, SW TOA fluxes inferred using theoretical ADMs that assume clouds are plane parallel are overestimated by 3–4 W m−2 and exhibit a strong latitudinal dependence. In the longwave (LW), the bias error ranges from 0.2 to 0.4 W m−2 and regional RMS errors remain smaller than 0.7 W m−2. Global mean albedos derived from ADMs developed during the Earth Radiation Budget Experiment (ERBE) and applied to CERES measurements show a systematic increase with viewing zenith angle of 4%–8%, while albedos from the CERES Terra ADMs show a smaller increase of 1%–2%. The LW fluxes from the ERBE ADMs show a systematic decrease with viewing zenith angle of 2%–2.4%, whereas fluxes from the CERES Terra ADMs remain within 0.7%–0.8% at all angles. Based on several months of multiangle CERES along-track data, the SW TOA flux consistency between nadir- and oblique-viewing zenith angles is generally 5% (<17 W m−2) over land and ocean and 9% (26 W m−2) in polar regions, and LW TOA flux consistency is approximate 3% (7 W m−2) over all surfaces. Based on these results and a theoretically derived conversion between TOA flux consistency and TOA flux error, the best estimate of the error in CERES TOA flux due to the radiance-to-flux conversion is 3% (10 W m−2) in the SW and 1.8% (3–5 W m−2) in the LW. Monthly mean TOA fluxes based on ERBE ADMs are larger than monthly mean TOA fluxes based on CERES Terra ADMs by 1.8 and 1.3 W m−2 in the SW and LW, respectively.

Corresponding author address: Dr. Norman G. Loeb, NASA Langley Research Center, MS 420, Hampton, VA 23681-2199. Email: n.g.loeb@larc.nasa.gov

Save
  • Ahmad, S. P., and Deering D. W. , 1992: A simple analytical function for bidirectional reflectance. J. Geophys. Res., 97 , 1886718886.

  • Barnes, W. L., Pagano T. S. , and Salomonson V. V. , 1998: Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1. IEEE Trans. Geosci. Remote Sens., 36 , 10881100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baum, B. A., Kratz D. P. , Yang P. , Ou S. C. , Hu Y. , Soulen P. F. , and Tsay S-C. , 2000: Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS. Part I: Data and models. J. Geophys. Res., 105 , 1176711780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlock, T. P., and Coauthors, 1997: Compute surface and atmospheric fluxes (system 5.0). CERES Algorithm Theoretical Basis Document, 84 pp. [Available online at http://asd-www.larc.nasa.gov/ATBD/pdf_docs/r2_2/ceres-atbd2.2-s5.0.pdf].

  • COESA, 1976: U.S. Standard Atmosphere, 1976. U.S. Government Printing Office, 227 pp.

  • Geier, E. B., Green R. N. , Kratz D. P. , Minnis P. , Miller W. F. , Nolan S. K. , and Franklin C. B. , cited. 2001: Single satellite footprint TOA/surface fluxes and clouds (SSF) collection document. [Available online at http://asd-www.larc.nasa.gov/ceres/collect_guide/SSF_CG.pdf].

  • Ignatov, A., and Stowe L. L. , 2002: Aerosol retrievals from individual AVHRR channels. Part I: Retrieval algorithm and transition from Dave to 6S radiative transfer model. J. Atmos. Sci., 59 , 313334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., and Loeb N. G. , 2005: Top-of-atmosphere shortwave broadband observed radiance and estimated irradiance over polar regions from Clouds and the Earth’s Radiant Energy System (CERES) instruments on Terra. J. Geophys. Res., 110 .D07202, doi:10.1029/2004JD005308.

    • Search Google Scholar
    • Export Citation
  • Kato, S., Hinkelman L. M. , and Cheng A. , 2006: Estimate of satellite-derived cloud optical thickness and effective radius errors and their effect on computed domain-averaged irradiances. J. Geophys. Res., 111 .D17201, doi:10.1029/2005JD006668.

    • Search Google Scholar
    • Export Citation
  • Li, Z., and Leighton H. G. , 1991: Scene identification and its effect on cloud radiative forcing in the Arctic. J. Geophys. Res., 96 , 91759188.

  • Loeb, N. G., and Davies R. , 1996: Observational evidence of plane parallel model biases: The apparent dependence of cloud optical depth on solar zenith angle. J. Geophys. Res., 101 , 16211634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., and Coakley J. A. Jr., 1998: Inference of marine stratus cloud optical depths from satellite measurements: Does 1D theory apply? J. Climate, 11 , 215233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., and Manalo-Smith N. , 2005: Top-of-atmosphere direct radiative effect of aerosols over global oceans from merged CERES and MODIS observations. J. Climate, 18 , 35063526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., Smith N. M. , Kato S. , Miller W. F. , Gupta S. K. , Minnis P. , and Wielicki B. A. , 2003a: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Tropical Rainfall Measuring Mission satellite. Part I: Methodology. J. Appl. Meteor., 42 , 240265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., Loukachine K. , Smith N. M. , Wielicki B. A. , and Young D. F. , 2003b: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Tropical Rainfall Measuring Mission satellite. Part II: Validation. J. Appl. Meteor., 42 , 17481769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., Kato S. , Loukachine K. , and Manalo-Smith N. , 2005: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Terra satellite. Part I: Methodology. J. Atmos. Oceanic Technol., 22 , 338351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., Sun W. , Miller W. F. , Loukachine K. , and Davies R. , 2006: Fusion of CERES, MISR, and MODIS measurements for top-of-atmosphere radiative flux validation. J. Geophys. Res., 111 .D18209, doi:10.1029/2006JD007146.

    • Search Google Scholar
    • Export Citation
  • Loveland, T. R., and Belward A. S. , 1997: The International Geosphere Biosphere Programme Data and Information System Global Land Cover dataset (DISCover). Acta Astronaut., 41 , 681689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., 1989: Viewing zenith angle dependence of cloudiness determined from coincident GOES East and GOES West data. J. Geophys. Res., 94 , 23032320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., Garber D. P. , Young D. F. , Arduini R. F. , and Tokano Y. , 1998: Parameterizations of reflectance and effective emittance for satellite remote sensing of cloud properties. J. Atmos. Sci., 55 , 33133339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., Young D. F. , Sun-Mack S. , Heck P. W. , Doelling D. R. , and Trepte Q. , 2003: CERES cloud property retrievals from imagers on TRMM, Terra, and Aqua. Proc. SPIE 10th Int. Symp. on Remote Sensing: Conf. on Remote Sensing of Clouds and the Atmosphere VII, Barcelona, Spain, SPIE, 37–48.

  • Moroney, C., Horvath A. , and Davies R. , 2002: Use of stereo-matching to coregister multiangle data from MISR. IEEE Trans. Geosci. Remote Sens., 40 , 15411546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and Tanaka M. , 1986: Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere. J. Quant. Spectrosc. Radiat. Transfer, 35 , 1321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and Tanaka M. , 1988: Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation. J. Quant. Spectrosc. Radiat. Transfer, 40 , 5169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahman, H., Verstraete M. M. , and Pinty B. , 1993: Coupled surface-atmosphere reflectance (CSAR) model 1. Model description and inversion on synthetic data. J. Geophys. Res., 98 , 2077920789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Remer, L. A., and Coauthors, 2005: The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci., 62 , 947973.

  • Rossow, W. B., and Schiffer R. A. , 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80 , 22612287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smirnov, A., Holben B. N. , Kaufman Y. J. , Dubovik O. , Eck T. F. , Slutsker I. , Pietras C. , and Halthore R. N. , 2002: Optical properties of atmospheric aerosol in maritime environments. J. Atmos. Sci., 59 , 501523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, G. L., Green R. N. , Raschke E. , Avis L. M. , Suttles J. T. , Wielicki B. A. , and Davies R. , 1986: Inversion methods for satellite studies of the earth radiation budget: Development of algorithms for the ERBE mission. Rev. Geophys., 24 , 407421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., 2005: Technical report series on global modeling and data assimilation, Vol. 26: Documentation and validation of the Goddard Earth Observing System (GEOS) data assimilation system—Version 4. NASA/TM-2005-104606, 181 pp.

  • Suttles, J. T., and Coauthors, 1988: Angular radiation models for Earth-atmosphere systems. Vol. I—Shortwave radiation. NASA Rep. NASA RP-1184, 144 pp.

  • Suttles, J. T., Green R. N. , Smith G. L. , Wielicki B. A. , Walker I. J. , Taylor V. R. , and Stowe L. L. , 1989: Angular radiation models for Earth-atmosphere systems. Vol. II—Longwave radiation. NASA Rep. NASA RP-1184, 84 pp.

  • Suttles, J. T., Wielicki B. A. , and Vemury S. , 1992: Top-of-atmosphere radiative fluxes: Validation of ERBE scanner inversion algorithm using Nimbus-7 ERB data. J. Appl. Meteor., 31 , 784796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wanner, W., Strahler A. H. , Hu B. , Lewis P. , Muller J-P. , Li X. , Barker Schaaf C. L. , and Barnsley M. J. , 1997: Global retrieval of bidirectional reflectance and albedo over land from EOS MODIS and MISR data: Theory and algorithm. J. Geophys. Res., 102 , 1714317162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., Cess R. D. , King M. D. , Randall D. A. , and Harrison E. F. , 1995: Mission to planet Earth: Role of clouds and radiation in climate. Bull. Amer. Meteor. Soc., 76 , 21252152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., Barkstrom B. R. , Harrison E. F. , Lee R. B. III, Smith G. L. , and Cooper J. E. , 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth observing system experiment. Bull. Amer. Meteor. Soc., 77 , 853868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., Liou K. N. , Wyser K. , and Mitchell D. , 2000: Parameterization of the scattering and absorption properties of individual ice crystals. J. Geophys. Res., 105 , 46994718.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., Christopher S. A. , Remer L. A. , and Kaufman Y. , 2005: Shortwave aerosol radiative forcing over cloud-free oceans from Terra: 1. Angular models for aerosols. J. Geophys. Res., 110 .D10S23, doi:10.1029/2004JD005008.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 678 242 21
PDF Downloads 344 101 14