Degradation of Radar Reflectivity by Cloud Attenuation at Microwave Frequency

Olivier Pujol Laboratoire d’Aérologie, Observatoire Midi-Pyrénées, Université Paul Sabatier, Toulouse, France

Search for other papers by Olivier Pujol in
Current site
Google Scholar
PubMed
Close
,
Jean-François Georgis Laboratoire d’Aérologie, Observatoire Midi-Pyrénées, Université Paul Sabatier, Toulouse, France

Search for other papers by Jean-François Georgis in
Current site
Google Scholar
PubMed
Close
,
Laurent Féral Laboratoire AD2M, Université Paul Sabatier, Toulouse, France

Search for other papers by Laurent Féral in
Current site
Google Scholar
PubMed
Close
, and
Henri Sauvageot Laboratoire d’Aérologie, Observatoire Midi-Pyrénées, Université Paul Sabatier, Toulouse, France

Search for other papers by Henri Sauvageot in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The main object of this paper is to emphasize that clouds—the nonprecipitating component of condensed atmospheric water—can produce a strong attenuation at operational microwave frequencies, although they present a low reflectivity preventing their radar detection. By way of a simple and realistic model, simulations of radar observations through warm precipitating targets are thus presented in order to quantify cloud attenuation. Simulations concern an airborne radar oriented downward and observing precipitation at four frequencies: 3, 10, 35, and 94 GHz. Two cases are first considered: a convective cell (vigorous cumulus congestus plus rain) and a stratiform one (nimbostratus plus drizzle) superimposed on the previous one. Other simulations are then performed on different types of cumulus (congestus, mediocris, and humilis) with various thicknesses characterized, in a microphysical sense, by their maximum liquid water content.

Simulations confirm the low cumulus reflectivity ranging from −45 dBZ for the weakest cumulus (i.e., the humilis one) to −5 dBZ for the strongest one (i.e., the vigorous cumulus congestus). It reaches −35 dBZ for the nimbostratus cloud. On the other hand, cumulus attenuation [precisely path-integrated cloud attenuation (PICA)] is not negligible and, depending on the frequency, can be very strong: the higher the frequency, the stronger the PICA. At 3 GHz, the far less attenuated frequency, PICA for the vigorous cumulus congestus alone in the convective cell (embedded into the stratiform background) is on the order of 1.2 dB (1.5 dB) at 10 GHz, 16 dB (20 dB) at 35 GHz, and 80 dB (100 dB) at 94 GHz. For weaker cumulus, PICA is lower but, in certain cases, significant. All these results mean that it is necessary to be very careful about radar measurements if reliable information on precipitation—for example, the precipitation rate R—has to be deduced, particularly at high operational frequencies.

Corresponding author address: Olivier Pujol, Laboratoire d’Aérologie, Observatoire Midi-Pyrénées, Université Paul Sabatier, 14 Ave. Édouard Belin, Toulouse 31400, France. Email: pujo@aero.obs-mip.fr

Abstract

The main object of this paper is to emphasize that clouds—the nonprecipitating component of condensed atmospheric water—can produce a strong attenuation at operational microwave frequencies, although they present a low reflectivity preventing their radar detection. By way of a simple and realistic model, simulations of radar observations through warm precipitating targets are thus presented in order to quantify cloud attenuation. Simulations concern an airborne radar oriented downward and observing precipitation at four frequencies: 3, 10, 35, and 94 GHz. Two cases are first considered: a convective cell (vigorous cumulus congestus plus rain) and a stratiform one (nimbostratus plus drizzle) superimposed on the previous one. Other simulations are then performed on different types of cumulus (congestus, mediocris, and humilis) with various thicknesses characterized, in a microphysical sense, by their maximum liquid water content.

Simulations confirm the low cumulus reflectivity ranging from −45 dBZ for the weakest cumulus (i.e., the humilis one) to −5 dBZ for the strongest one (i.e., the vigorous cumulus congestus). It reaches −35 dBZ for the nimbostratus cloud. On the other hand, cumulus attenuation [precisely path-integrated cloud attenuation (PICA)] is not negligible and, depending on the frequency, can be very strong: the higher the frequency, the stronger the PICA. At 3 GHz, the far less attenuated frequency, PICA for the vigorous cumulus congestus alone in the convective cell (embedded into the stratiform background) is on the order of 1.2 dB (1.5 dB) at 10 GHz, 16 dB (20 dB) at 35 GHz, and 80 dB (100 dB) at 94 GHz. For weaker cumulus, PICA is lower but, in certain cases, significant. All these results mean that it is necessary to be very careful about radar measurements if reliable information on precipitation—for example, the precipitation rate R—has to be deduced, particularly at high operational frequencies.

Corresponding author address: Olivier Pujol, Laboratoire d’Aérologie, Observatoire Midi-Pyrénées, Université Paul Sabatier, 14 Ave. Édouard Belin, Toulouse 31400, France. Email: pujo@aero.obs-mip.fr

Save
  • Atlas, D., 1990: Radar in Meteorology. Amer. Meteor. Soc., 806 pp.

  • Atlas, D., and Ludlam F. H. , 1961: Multi-wavelength radar reflectivity of hailstorms. Quart. J. Roy. Meteor. Soc., 86 , 468482.

  • Blanchard, D. C., 1953: Raindrop size distribution in Hawaiian rains. J. Meteor., 10 , 457473.

  • Borovikov, A. M., 1963: Cloud Physics. U.S. Dept. of Commerce, 392 pp.

  • Deirmendjian, D., 1969: Electromagnetic Scattering on Spherical Polydispersions. Elsevier, 290 pp.

  • Doviak, R. J., and Zrnić D. , 1993: Doppler Radar and Weather Observations. Academic Press, 562 pp.

  • Durden, S. L., Im E. , Li K. , Ricketts W. , Tanner A. , and Wilson W. , 1994: ARMAR: An Airborne Rain Mapping Radar. J. Atmos. Oceanic Technol., 11 , 727737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eccles, P. J., and Mueller E. A. , 1971: X-band attenuation and liquid water content estimation by dual-wavelength radar. J. Appl. Meteor., 10 , 12521259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eccles, P. J., and Atlas D. , 1973: A dual-wavelength radar hail detector. J. Appl. Meteor., 12 , 847854.

  • Féral, L., Sauvageot H. , and Soula S. , 2003: Hail detection using S-band and C-band radar reflectivity difference. J. Atmos. Oceanic Technol., 20 , 233248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaussiat, N., Sauvageot H. , and Illingworth A. J. , 2003: Cloud liquid water and ice content retrieval by multiwavelength radar. J. Atmos. Oceanic Technol., 20 , 12641275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glickman, T. S., 2000: Glossary of Meteorology. 2d ed. Amer. Meteor. Soc., 855 pp.

  • Goldhirsh, J., and Katz I. , 1974: Estimation of raindrop size distribution using multiple wavelength radar systems. Radio Sci., 9 , 439446.

  • Gossard, E. E., and Strauch R. G. , 1983: Radar Observation of Clear Air and Clouds. Elsevier, 280 pp.

  • Gosset, M., and Sauvageot H. , 1992: A dual-wavelength radar method for ice-water characterization in mixed-phase clouds. J. Atmos. Oceanic Technol., 9 , 538547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., Walther C. A. , Frusch C. L. , Testud J. , and Baudin F. , 1994: The ELDORA/ASTRAIA airborne Doppler weather radar: Goals, design, and first field tests. Proc. IEEE, 82 , 18731890.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., Illingworth A. , and Sauvageot H. , 2000: Measuring crystal size in cirrus using 35- and 94- GHz radars. J. Atmos. Oceanic Technol., 17 , 2737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., 1995: Using multiparameter radar to estimate the attenuation and water content of clouds. J. Appl. Meteor., 34 , 20462059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khrgian, A. Kh, and Mazin I. P. , 1952: The size distribution of droplets in clouds. Tr. Tsentr. Aerol. Obs., 7 , 5661.

  • Lhermitte, R., 1990: Attenuation and scattering of millimeter wavelength radiation by clouds and precipitation. J. Atmos. Oceanic Technol., 7 , 464479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebe, H., 1985: An updated model for millimeter wave propagation in moist air. Radio Sci., 20 , 1069–1089.

  • Mason, B. J., 1971: The Physics of Clouds. The Pennsylvania State University Press, 481 pp.

  • Meneghini, R., and Kozu T. , 1990: Spaceborne Weather Radar. Artech House, 199 pp.

  • Meneghini, R., Iguchi T. , Kozu T. , Liao L. , Okamoto K. , Jones J. A. , and Kwiatkowski J. , 2000: Use of the surface reference technique for path attenuation estimates from the TRMM precipitation radar. J. Appl. Meteor., 39 , 20532070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mie, G., 1908: Beiträge zur Optik trüber medien, speziell kolloidaler metallösungen. Ann. Phys., 25 , 377445.

  • Okita, T., 1958: Observations on vertical change of raindrop size distribution. Tohoku University Science Rep. 1, Geophysics Series 5, Vol. 10, 13 pp.

  • Oury, S., Testud J. , and Marécal V. , 1998: Estimate of precipitation from the dual-beam airborne radar in TOGA COARE. Part I: The KZ relationships derived from stereo and quad-beam analysis. J. Appl. Meteor., 38 , 156174.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H., and Klett J. D. , 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 943 pp.

  • Ray, P. S., 1972: Broadband complex refractive indices of ice and water. Appl. Opt., 11 , 18361844.

  • Sauvageot, H., 1992: Radar Meteorology. Artech House, 366 pp.

  • Sauvageot, H., and Omar J. , 1987: Radar reflectivity of cumulus clouds. J. Atmos. Oceanic Technol., 4 , 264272.

  • Schumacher, C., and Houze R. A. Jr., 2000: Comparison of radar data from the TRMM satellite and Kwajalein oceanic validation site. J. Appl. Meteor., 39 , 21512164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sekhon, R. S., and Srivastava R. C. , 1971: Doppler radar observations of drop size distribution in thunderstorm. J. Atmos. Sci., 28 , 983994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Squires, P., 1958: The microstructure and colloidal stability of warm clouds. Tellus, 10 , 256271.

  • Srivastava, R. C., and Jameson J. , 1977: Radar detection of hail. Hail: A Review of Hail Science and Hail Suppression, Meteor. Monogr., No. 38, Amer. Meteor. Soc., 269–277.

    • Crossref
    • Export Citation
  • Srivastava, R. C., and Tian L. , 1996: Measurement of attenuation by a dual-radar method: Concept and error analyses. J. Atmos. Oceanic Technol., 13 , 937947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stratton, J. A., 1941: Electromagnetic Theory. McGraw-Hill, 702 pp.

  • Testud, J., and Amayenc P. , 1989: Stereoradar meteorology: A promising technique for observation of precipitation from a mobile platform. J. Atmos. Oceanic Technol., 6 , 89108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22 , 17641775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J. E., Brooks M. , Politovich M. K. , and Zhang G. , 1999: Retrieval of atmospheric liquid and ice characteristics using dual-wavelength radar observations. IEEE Trans. Geosci. Remote Sens., 37 , 23252333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vulfson, N. I., Laktinov A. G. , and Skatskii V. I. , 1973: Cumuli structure at various stages of development. J. Appl. Meteor., 22 , 664670.

    • Search Google Scholar
    • Export Citation
  • Warner, J., 1955: The water content of cumuliform cloud. Tellus, 7 , 449457.

  • Warner, J., 1969: The microstructure of cumulus cloud. Part I. General features of the droplet size spectrum. J. Atmos. Sci., 26 , 10491059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J., 1970: The microstructure of cumulus cloud. Part III. The nature of the updraft. J. Atmos. Sci., 27 , 682688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, H-Y. M., Prasad N. , Meneghini R. , Tao W-K. , Jones J. A. , and Adler R. F. , 1995: Cloud model–based simulation of spaceborne radar observations. J. Appl. Meteor., 34 , 175197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaitsev, V. A., 1950: Water content and distribution of drops in cumulus clouds. Gla. Geofiz. Obs. Tr., 19 , 122132.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 458 125 11
PDF Downloads 322 68 4