Mesoscale Numerical Weather Prediction Models Used in Support of Infrared Hyperspectral Measurement Simulation and Product Algorithm Development

Jason A. Otkin Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Jason A. Otkin in
Current site
Google Scholar
PubMed
Close
,
Derek J. Posselt Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Derek J. Posselt in
Current site
Google Scholar
PubMed
Close
,
Erik R. Olson Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Erik R. Olson in
Current site
Google Scholar
PubMed
Close
,
Hung-Lung Huang Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Hung-Lung Huang in
Current site
Google Scholar
PubMed
Close
,
James E. Davies Division of Marine and Atmospheric Research, CSIRO, Hobart, Tasmania, Australia

Search for other papers by James E. Davies in
Current site
Google Scholar
PubMed
Close
,
Jun Li Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Jun Li in
Current site
Google Scholar
PubMed
Close
, and
Christopher S. Velden Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Christopher S. Velden in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A novel application of numerical weather prediction (NWP) models within an end-to-end processing system used to demonstrate advanced hyperspectral satellite technologies and instrument concepts is presented. As part of this system, sophisticated NWP models are used to generate simulated atmospheric profile datasets with fine horizontal and vertical resolution. The simulated datasets, which are treated as the “truth” atmosphere, are subsequently passed through a sophisticated forward radiative transfer model to generate simulated top-of-atmosphere (TOA) radiances across a broad spectral region. Atmospheric motion vectors and temperature and water vapor retrievals generated from the TOA radiances are then compared with the original model-simulated atmosphere to demonstrate the potential utility of future hyperspectral wind and retrieval algorithms. Representative examples of TOA radiances, atmospheric motion vectors, and temperature and water vapor retrievals are shown to illustrate the use of the simulated datasets.

Case study results demonstrate that the numerical models are able to realistically simulate mesoscale cloud, temperature, and water vapor structures present in the real atmosphere. Because real hyperspectral radiance measurements with high spatial and temporal resolution are not available for large geographical domains, the simulated TOA radiance datasets are the only viable alternative that can be used to demonstrate the new hyperspectral technologies and capabilities. As such, sophisticated mesoscale models are critically important for the demonstration of the future end-to-end processing system.

Corresponding author address: Mr. Jason Otkin, 1225 W. Dayton St., Madison, WI 53706. Email: jason.otkin@ssec.wisc.edu

Abstract

A novel application of numerical weather prediction (NWP) models within an end-to-end processing system used to demonstrate advanced hyperspectral satellite technologies and instrument concepts is presented. As part of this system, sophisticated NWP models are used to generate simulated atmospheric profile datasets with fine horizontal and vertical resolution. The simulated datasets, which are treated as the “truth” atmosphere, are subsequently passed through a sophisticated forward radiative transfer model to generate simulated top-of-atmosphere (TOA) radiances across a broad spectral region. Atmospheric motion vectors and temperature and water vapor retrievals generated from the TOA radiances are then compared with the original model-simulated atmosphere to demonstrate the potential utility of future hyperspectral wind and retrieval algorithms. Representative examples of TOA radiances, atmospheric motion vectors, and temperature and water vapor retrievals are shown to illustrate the use of the simulated datasets.

Case study results demonstrate that the numerical models are able to realistically simulate mesoscale cloud, temperature, and water vapor structures present in the real atmosphere. Because real hyperspectral radiance measurements with high spatial and temporal resolution are not available for large geographical domains, the simulated TOA radiance datasets are the only viable alternative that can be used to demonstrate the new hyperspectral technologies and capabilities. As such, sophisticated mesoscale models are critically important for the demonstration of the future end-to-end processing system.

Corresponding author address: Mr. Jason Otkin, 1225 W. Dayton St., Madison, WI 53706. Email: jason.otkin@ssec.wisc.edu

Save
  • Chen, F., and Dudhia J. , 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129 , 569585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clough, S. A., and Iacono M. J. , 1995: Line-by-line calculations of atmospheric fluxes and cooling rates. 2: Applications to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons. J. Geophys. Res., 100 , 1651916535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, J. E., Olson E. R. , and Posselt D. J. , 2003: Cloud model upgrade to the GIFTS Fast Radiative Transfer Model. University of Wisconsin—Madison, Space Science and Engineering Center, UW-SSEC Publication 03.09.D1, 44 pp.

  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46 , 30773107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., Gill D. , Manning K. , Wang W. , Bruyere C. , Wilson J. , and Kelly S. , 2003: PSU/NCAR mesoscale modeling system tutorial class notes and users guide. MM5 Modeling System version 3, Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, 390 pp.

  • Grasso, L. D., 2000: The differentiation between grid spacing and resolution and their application to numerical modeling. Bull. Amer. Meteor. Soc., 81 , 579580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., Dudhia J. , and Stauffer D. R. , 1994: A description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN 398+STR, 117 pp.

  • Hong, S-Y., and Pan H-L. , 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124 , 23222339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S-Y., and Lim J-O. , 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42 , 129151.

  • Hong, S-Y., Dudhia J. , and Chen S-H. , 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132 , 103120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and Huang H-L. , 1999: Retrieval of atmospheric profiles from satellite sounder measurements by use of the discrepancy principle. Appl. Opt., 38 , 916923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., Wolf W. , Menzel W. P. , Zhang W. , Huang H-L. , and Achtor T. H. , 2000: Global soundings of the atmosphere from ATOVS measurements: The algorithm and validation. J. Appl. Meteor., 39 , 12481268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., Sun F. , Seemann S. , Weisz E. , and Huang H-L. , 2004: GIFTS sounding retrieval algorithm development. Preprints, 20th Int. Conf. on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Seattle, WA, Amer. Meteor. Soc., CD-ROM, P2.32.

  • Lin, L-H., Farley R. D. , and Orville H. D. , 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22 , 10651092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and Yau M. K. , 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62 , 30513064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 2002: Effective diameter in radiative transfer: General definition, applications, and limitations. J. Atmos. Sci., 59 , 23302346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., Taubman S. J. , Brown P. D. , and Iacono M. J. , 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 , 1666316682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., Curry J. A. , Shupe M. D. , and Zuidema P. , 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part II: Single-column modeling of arctic clouds. J. Atmos. Sci., 62 , 16781693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moy, L., Tobin D. , van Delst P. , and Woolf H. , 2004: Clear sky forward model development for GIFTS. Preprints, 20th Int. Conf. on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Seattle, WA, Amer. Meteor. Soc., CD-ROM, P.2.35.

  • Nieman, S., Schmetz J. , and Menzel W. P. , 1993: A comparison of several techniques to assign heights to cloud tracers. J. Appl. Meteor., 32 , 15591568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, J., Yang P. , Huang H-L. , Davies J. E. , Li J. , Baum B. A. , and Hu Y. X. , 2007: A fast infrared radiative transfer model for overlapping clouds. J. Quant. Spectrosc. Radiat. Transfer, 103 , 447459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., 2002: Mesoscale Meteorological Modeling. 2d ed. Academic Press, 676 pp.

  • Reisner, J., Bruintjes R. , and Rasmussen R. , 1998: An examination on the utility of forecasting supercooled liquid water in a mesoscale model. Quart. J. Roy. Meteor. Soc., 124 , 10711107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., Li J. , and Gurka J. , 2003: Introduction of the Hyperspectral Environmental Suite (HES) on GOES-R and beyond. Proc. 13th Int. TOVS Study Conf., Ste-Adele, QC, Canada, University of Wisconsin, 577–584.

  • Schmit, T. J., Gunshor M. M. , Menzel W. P. , Gurka J. J. , Li J. , and Bachmeier A. S. , 2005: Introducing the next-generation Advanced Baseline Imager on GOES-R. Bull. Amer. Meteor. Soc., 86 , 10791096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, A., and Beheng K. D. , 2005: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteor. Atmos. Phys., 92 , 4566.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132 , 30193032.

  • Skamarock, W. C., Klemp J. B. , Dudhia J. , Gill D. O. , Barker D. M. , Wang W. , and Powers J. G. , 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp.

  • Smith, W. L., and Coauthors, 2001: The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS). Preprints, 11th Conf. on Satellite Meteorology and Oceanography, Madison, WI, Amer. Meteor. Soc, 700–707.

  • Smith, W. L., and Coauthors, 2003: Validation of satellite AIRS retrievals with aircraft NAST-I soundings and dropsondes: Implications for future satellite sounding capabilities. Proc. 13th Int. TOVS Study Conf., Ste-Adele, QC, Canada, University of Wisconsin, 382–394.

  • Smith, W. L., Zhou D. K. , Huang H-L. , Li J. , Liu X. , and Larar A. M. , 2004: Extraction of profile information from cloud contaminated radiances. Proc. ECMWF Workshop on the Assimilation of High Spectral Resolution Sounders in NWP, Reading, United Kingdom, ECMWF, 145–154.

  • Stamnes, K., Tsay S. C. , Wiscombe W. , and Jayaweera K. , 1988: A numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27 , 25022509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stauffer, D. R., and Seaman N. L. , 1990: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data. Mon. Wea. Rev., 118 , 12501277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W-K., and Simpson J. , 1993a: Goddard Cumulus Ensemble Model. Part I: Model description. Terr. Atmos. Oceanic Sci., 4 , 3572.

  • Tao, W-K., and Simpson J. , 1993b: Goddard Cumulus Ensemble Model. Part II: Applications for studying cloud precipitating processes and for NASA TRMM. Terr. Atmos. Oceanic Sci., 4 , 73116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tobin, D., and Coauthors, 2001: Simulation of GIFTS data cubes. Preprints, 11th Conf. on Satellite Meteorology and Oceanography, Madison, WI, Amer. Meteor. Soc., 563–565.

  • Velden, C., Hayden C. , Nieman S. , Menzel W. P. , Wanzong S. , and Goerss J. S. , 1997: Upper-tropospheric winds derived from geostationary satellite water vapor observations. Bull. Amer. Meteor. Soc., 78 , 173195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C., and Coauthors, 2005: Recent innovations in deriving tropospheric winds from meteorological satellites. Bull. Amer. Meteor. Soc., 86 , 205223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, H., Yang P. , Li J. , Baum B. A. , Huang H-L. , Platnick S. , Hu Y. , and Strow L. , 2004: Retrieval of semitransparent ice cloud optical thickness from Atmospheric Infrared Sounder (AIRS) measurements. IEEE Trans. Geosci. Remote Sens., 42 , 22542267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisz, E., Huang H-L. , Li J. , Wetzel-Seemann S. , Borbas E. , and Gumley L. , 2003: AIRS real-time sounding profile retrieval for IMAPP users. Proc. 13th Int. TOVS Study Conf., Ste-Adele, QC, Canada, University of Wisconsin, 323–330.

  • Yang, P., Wei H-L. , Baum B. A. , Huang H-L. , Heymsfield A. J. , Hu Y. X. , Gao B-C. , and Turner D. D. , 2003: The spectral signature of mixed-phase clouds composed of non-spherical ice crystals and spherical liquid droplets in the terrestrial window region. J. Quant. Spectrosc. Radiat. Transfer, 79–80 , 11711188.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 302 85 9
PDF Downloads 173 39 3