Latent Heat Flux Profiles from Collocated Airborne Water Vapor and Wind Lidars during IHOP_2002

C. Kiemle Institute of Atmospheric Physics, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany

Search for other papers by C. Kiemle in
Current site
Google Scholar
PubMed
Close
,
G. Ehret Institute of Atmospheric Physics, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany

Search for other papers by G. Ehret in
Current site
Google Scholar
PubMed
Close
,
A. Fix Institute of Atmospheric Physics, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany

Search for other papers by A. Fix in
Current site
Google Scholar
PubMed
Close
,
M. Wirth Institute of Atmospheric Physics, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany

Search for other papers by M. Wirth in
Current site
Google Scholar
PubMed
Close
,
G. Poberaj Institute of Atmospheric Physics, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany

Search for other papers by G. Poberaj in
Current site
Google Scholar
PubMed
Close
,
W. A. Brewer Environmental Technical Laboratory, NOAA, Boulder, Colorado

Search for other papers by W. A. Brewer in
Current site
Google Scholar
PubMed
Close
,
R. M. Hardesty Environmental Technical Laboratory, NOAA, Boulder, Colorado

Search for other papers by R. M. Hardesty in
Current site
Google Scholar
PubMed
Close
,
C. Senff Environmental Technical Laboratory, NOAA, Boulder, Colorado

Search for other papers by C. Senff in
Current site
Google Scholar
PubMed
Close
, and
M. A. LeMone Earth Observation Laboratory, NCAR, Boulder, Colorado

Search for other papers by M. A. LeMone in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Latent heat flux profiles in the convective boundary layer (CBL) are obtained for the first time with the combination of the Deutsches Zentrum für Luft- und Raumfahrt (DLR) water vapor differential absorption lidar (DIAL) and the NOAA high resolution Doppler wind lidar (HRDL). Both instruments were integrated nadir viewing on board the DLR Falcon research aircraft during the International H2O Project (IHOP_2002) over the U.S. Southern Great Plains. Flux profiles from 300 to 2500 m AGL are computed from high spatial resolution (150 m horizontal and vertical) two-dimensional water vapor and vertical velocity lidar cross sections using the eddy covariance technique. Three flight segments on 7 June 2002 between 1000 and 1300 LT over western Oklahoma and southwestern Kansas are analyzed. On two segments with strong convection, the latent heat flux peaks at (700 ± 200) W m−2 in the entrainment zone and decreases linearly to (200 ± 100) W m−2 in the lower CBL. A water vapor budget analysis reveals that this flux divergence [(0.9 ± 0.4) g kg−1 h−1] plus the advection (0.3 g kg−1 h−1) are nearly balanced by substantial CBL drying [(1.5 ± 0.2) g kg−1 h−1] observed by airborne and surface in situ instruments, within the limits of the overall budget rms error of 0.5 g kg−1 h−1. Entrainment of dry air from aloft and net upward humidity transport caused the CBL drying and finally inhibited the initiation of deep convection. All cospectra show significant contributions to the flux between 1- and 10-km wavelength, with peaks between 2 and 6 km, originating from large eddies. The main flux uncertainty is due to low sampling (55% rmse at mid-CBL), while instrument noise (15%) and systematic errors (7%) play a minor role. The combination of a water vapor and a wind lidar on an aircraft appears as an attractive new tool that allows measuring latent heat flux profiles from a single overflight of the investigated area.

# Current affiliation: Institute for Quantum Electronics, Eidgenössische Technische Hochschule, Zürich, Switzerland

Corresponding author address: Christoph Kiemle, Institute of Atmospheric Physics, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, 82230 Wessling, Germany. Email: christoph.kiemle@dlr.de

Abstract

Latent heat flux profiles in the convective boundary layer (CBL) are obtained for the first time with the combination of the Deutsches Zentrum für Luft- und Raumfahrt (DLR) water vapor differential absorption lidar (DIAL) and the NOAA high resolution Doppler wind lidar (HRDL). Both instruments were integrated nadir viewing on board the DLR Falcon research aircraft during the International H2O Project (IHOP_2002) over the U.S. Southern Great Plains. Flux profiles from 300 to 2500 m AGL are computed from high spatial resolution (150 m horizontal and vertical) two-dimensional water vapor and vertical velocity lidar cross sections using the eddy covariance technique. Three flight segments on 7 June 2002 between 1000 and 1300 LT over western Oklahoma and southwestern Kansas are analyzed. On two segments with strong convection, the latent heat flux peaks at (700 ± 200) W m−2 in the entrainment zone and decreases linearly to (200 ± 100) W m−2 in the lower CBL. A water vapor budget analysis reveals that this flux divergence [(0.9 ± 0.4) g kg−1 h−1] plus the advection (0.3 g kg−1 h−1) are nearly balanced by substantial CBL drying [(1.5 ± 0.2) g kg−1 h−1] observed by airborne and surface in situ instruments, within the limits of the overall budget rms error of 0.5 g kg−1 h−1. Entrainment of dry air from aloft and net upward humidity transport caused the CBL drying and finally inhibited the initiation of deep convection. All cospectra show significant contributions to the flux between 1- and 10-km wavelength, with peaks between 2 and 6 km, originating from large eddies. The main flux uncertainty is due to low sampling (55% rmse at mid-CBL), while instrument noise (15%) and systematic errors (7%) play a minor role. The combination of a water vapor and a wind lidar on an aircraft appears as an attractive new tool that allows measuring latent heat flux profiles from a single overflight of the investigated area.

# Current affiliation: Institute for Quantum Electronics, Eidgenössische Technische Hochschule, Zürich, Switzerland

Corresponding author address: Christoph Kiemle, Institute of Atmospheric Physics, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, 82230 Wessling, Germany. Email: christoph.kiemle@dlr.de

Save
  • Behrendt, A., Kiemle C. , Di Girolamo P. , Bauer H-S. , Schaberl T. , and Wulfmeyer V. , 2004: Measurement and intercomparison of active, passive, and in situ sensors during the International H2O Project for the verification of the specifications of the WALES experiment. ESA Final Rep. 16669/02/NL/FF, 56 pp.

  • Behrendt, A., and Coauthors, 2007: Intercomparison of water vapor data measured with lidar during IHOP_2002. Part I: Airborne to ground-based lidar systems and comparisons with chilled-mirror radiosondes. J. Atmos. Oceanic Technol., 24 , 321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, K. J., Gamage N. , Hagelberg C. , Lenschow D. H. , Kiemle C. , and Sullivan P. P. , 2000: An objective method for deriving atmospheric structure from airborne lidar observations. J. Atmos. Oceanic Technol., 17 , 14551468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duncan, M. R., and Schuepp P. H. , 1992: A method to delineate extreme structures within airborne flux traces over the FIFE site. J. Geophys. Res., 97 , 1848718498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehret, G., Hoinka K. P. , Stein J. , Fix A. , Kiemle C. , and Poberaj G. , 1999: Low-stratospheric water vapor measured by an airborne DIAL. J. Geophys. Res., 104 , 3135131359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giez, A., Ehret G. , Schwiesow R. L. , Davis K. J. , and Lenschow D. H. , 1999: Water vapor flux measurements from ground-based vertically pointed water vapor differential absorption and Doppler lidars. J. Atmos. Oceanic Technol., 16 , 237250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grund, C. J., Banta M. , George J. , Howell J. , Post M. , Richter R. , and Weickmann A. , 2001: High-resolution Doppler lidar for boundary layer research. J. Atmos. Oceanic Technol., 18 , 376393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardesty, R. M., and Coauthors, 2003: Airborne measurements of horizontal wind and moisture transport using co-deployed Doppler and DIAL lidars. Proc. Int. Symp. on Tropospheric Profiling, Leipzig, Germany, Institute for Tropospheric Research and German Weather Service, 390–392.

  • Ismail, S., and Browell E. V. , 1989: Airborne and spaceborne lidar measurements of water vapor profiles: A sensitivity analysis. Appl. Opt., 28 , 36033614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiemle, C., Ehret G. , Giez A. , Davis K. J. , Lenschow D. H. , and Oncley S. P. , 1997: Estimation of boundary-layer humidity fluxes and statistics from airborne differential absorption lidar (DIAL). J. Geophys. Res., 102 , 2918929203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., and Stankov B. B. , 1986: Length scales in the convective boundary layer. J. Atmos. Sci., 43 , 11981209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., Mann J. , and Kristensen L. , 1994: How long is long enough when measuring fluxes and other turbulence statistics? J. Atmos. Oceanic Technol., 11 , 661673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., Wulfmeyer V. , and Senff C. , 2000: Measuring second- through fourth-order moments in noisy data. J. Atmos. Sci., 17 , 13301347.

    • Search Google Scholar
    • Export Citation
  • Moeng, C-H., and Wyngaard J. C. , 1989: Evaluation of turbulent transport and dissipation closures in second-order modeling. J. Atmos. Sci., 46 , 23112330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poberaj, G., Fix A. , Assion A. , Wirth M. , Kiemle C. , and Ehret G. , 2002: Airborne all-solid-state dial for water vapour measurements in the tropopause region: System description and assessment of accuracy. Appl. Phys. B, 75 , 165172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Press, W. H., Flannery B. P. , Teukolsky S. A. , and Vetterling W. T. , 1988: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, 735 pp.

    • Search Google Scholar
    • Export Citation
  • Senff, C., Bösenberg J. , and Peters G. , 1994: Measurement of water vapor flux profiles in the convective boundary layer with lidar and radar-RASS. J. Atmos. Oceanic Technol., 11 , 8593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 645 pp.

  • Webb, E. K., Pearman G. I. , and Leuning R. , 1980: Correction of flux measurements for density effects due to heat and water vapour transfer. Quart. J. Roy. Meteor. Soc., 106 , 85100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and Coauthors, 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85 , 253277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., 1999: Investigations of turbulent processes in the lower troposphere with water vapor DIAL and radar-RASS. J. Atmos. Sci., 56 , 10551076.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 379 84 7
PDF Downloads 158 50 9