• Andreas, E. L., 1992: Spray and the turbulent air-sea heat fluxes. J. Geophys. Res., 97 , C7. 1142911441.

  • Arya, S. P., 2001: Introduction to Micrometeorology. Academic Press, 415 pp.

  • Boyle, J. P., 1999: Solar radiation calibration and modeling studies for an in-situ lake/ocean surface heat flux sensor. Preprints, 10th Conf. on Atmospheric Radiation, Madison, WI, Amer. Meteor. Soc., 478–481.

  • Boyle, J. P., 2000: Air-sea surface heat flux, solar irradiance and surface temperature measurement using an in-situ sensor. Preprints, 10th Conf. on Interaction of the Sea and Atmosphere, Ft. Lauderdale, FL, Amer. Meteor. Soc., 31–32.

  • Bradley, E. F., Fairall C. W. , Hare J. E. , and Grachev A. A. , 2000: An old and improved bulk algorithm for air-sea fluxes: COARE 2.6a. Preprints, 14th Symp. on Boundary Layers and Turbulence, Amer. Meteor. Soc., 294–296.

  • Brock, T. D., 1985: A Eutrophic Lake: Lake Mendota, Wisconsin. Springer-Verlag, 308 pp.

  • Clayson, C. A., Fairall C. W. , and Curry J. A. , 1996: Evaluation of turbulent fluxes at the ocean surface using surface renewal theory. J. Geophys. Res., 101 , C2. 2851528528.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 2004: Air–sea heat flux measurements from nearly neutrally buoyant floats. J. Atmos. Oceanic Technol., 21 , 10861094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edson, J. B., Hinton A. , Prada K. , Hare J. , and Fairall C. W. , 1998: Direct covariance flux estimates from mobile platforms at sea. J. Atmos. Oceanic Technol., 15 , 547562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., Bradley E. F. , Godfrey J. S. , Wick G. A. , Edson J. B. , and Young G. S. , 1996a: Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res., 101 , C1. 12951308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., Bradley E. F. , Rogers D. P. , Edson J. B. , and Young G. S. , 1996b: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res., 101 , C2. 37473764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., White A. B. , Edson J. B. , and Hare J. E. , 1997: Integrated shipboard measurements of the marine boundary layer. J. Atmos. Oceanic Technol., 14 , 338359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., Persson P. O. G. , Bradley E. F. , Payne R. E. , and Anderson S. P. , 1998: A new look at calibration and use of Eppley precision infrared radiometers. Part I: Theory and application. J. Atmos. Oceanic Technol., 15 , 12291242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., Bradley E. F. , Hare J. E. , Grachev A. A. , and Edson J. B. , 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 15 , 571591.

    • Search Google Scholar
    • Export Citation
  • Godfrey, J. S., and Beljaars A. C. M. , 1991: On the turbulent fluxes of buoyancy, heat and moisture at the air-sea interface at low wind speed. J. Geophys. Res., 96 , 2204322048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graber, H. C., Terray E. A. , Donelan M. A. , Leer J. V. , and Drennan W. M. , 2000: ASIS—A new air–sea interaction spar buoy: Design and performance at sea. J. Atmos. Oceanic Technol., 17 , 708720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hicks, B. B., de Luisi J. J. , and Matt D. R. , 1996: The NOAA Integrated Surface Irradiance Study (ISIS)—A new surface radiation monitoring program. Bull. Amer. Meteor. Soc., 77 , 28572864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jessup, A. T., Zappa C. J. , Loewen M. R. , and Hesany V. , 1997a: Infrared remote sensing of breaking waves. Nature, 385 , 5255.

  • Jessup, A. T., Zappa C. J. , and Yeh H. , 1997b: Defining and quantifying microscale wave breaking with infrared imagery. J. Geophys. Res., 102 , C10. 2314523153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jourdan, D., and Gautier C. , 1995: Comparison between global latent heat flux computed from multisensor (SSM/I and AVHRR) and from in situ data. J. Atmos. Oceanic Technol., 12 , 4672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katsaros, K. B., 1980: The aqueous thermal boundary layer. Bound.-Layer Meteor., 18 , 107127.

  • Katsaros, K. B., and DeVault J. E. , 1986: On irradiance measurement errors at sea due to tilt of pyranometers. J. Atmos. Oceanic Technol., 3 , 740745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katsaros, K. B., Liu W. T. , Businger J. A. , and Tillman J. E. , 1977: Heat transport and thermal structure in the interfacial boundary layer measured in an open tank of water in turbulent free convection. J. Fluid Mech., 83 , 21. 311335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khundzhua, G. G., and Andreyev Y. G. , 1974: An experimental study of heat exchange between the ocean and the atmosphere in small-scale interaction. Izv. Atmos. Oceanic Phys., 10 , 11101113.

    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., and Businger J. A. , 1994: Atmosphere-Ocean Interaction. Oxford University Press, 362 pp.

  • Liu, W. T., 1990: Remote sensing of surface turbulent heat flux. Remote Sensing, G. L. Geernaert and W. L. Plant, Eds., Vol. 2, Surface Waves and Fluxes, Kluwer Academic, 293–310.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., 2004: Estimating ocean-atmosphere exchanges from space. Extended Abstracts, 16th Symp. on Boundary Layers and Turbulence, Portland, ME, Amer. Meteor. Soc., CD-ROM, 1.1.

  • Liu, W. T., and Businger J. A. , 1975: Temperature profile in the molecular sublayer near the interface of a fluid in turbulent motion. Geophys. Res. Lett., 2 , 403404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1969: Action of a variable stress at the surface of water waves. Phys. Fluids, 12 , 737740.

  • MacWhorter, M. A., and Weller R. A. , 1991: Error measurements of incoming shortwave radiation made from ships and buoys. J. Atmos. Oceanic Technol., 8 , 108117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mammen, T. C., and von Bosse N. , 1990: STEP—A temperature profiler for measuring the oceanic thermal boundary layer at the ocean–air interface. J. Atmos. Oceanic Technol., 7 , 312322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McAlister, E. D., and McLeish W. , 1969: Heat transfer in the top millimeter of the ocean. J. Geophys. Res., 74 , C9. 34083414.

  • McAlister, E. D., and McLeish W. , 1970: A radiometric system for airborne measurement of the total heat flow from the sea. Appl. Opt., 9 , 26972705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKeown, W., Bretherton F. , Huang H. L. , Smith W. L. , and Revercomb H. L. , 1995: Sounding the skin of water: Sensing air/water interface temperature gradients with interferometry. J. Atmos. Oceanic Technol., 12 , 13131327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortolano, D. J., and Hines F. F. , 1983: A simplified approach to heat flow measurement. Adv. Instrum., 38 , 14491456.

  • Payne, R. E., 1972: Albedo of the sea surface. J. Atmos. Sci., 29 , 959970.

  • Smith, S. D., Fairall C. W. , Geernaert G. L. , and Hasse L. , 1996: Air-sea fluxes: 25 years of progress. Bound.-Layer Meteor., 78 , 247290.

  • Sromovsky, L. A., Best F. A. , Boyle J. P. , Sisko C. A. , and Suomi V. E. , 1999a: Skin-Layer Ocean Heat Flux Instrument (SOHFI) I: Design and laboratory characterization. J. Atmos. Oceanic Technol., 16 , 12241238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sromovsky, L. A., Best F. A. , Boyle J. P. , Sisko C. A. , and Suomi V. E. , 1999b: Skin-Layer Ocean Heat Flux Instrument (SOHFI) II: Field measurements of surface heat flux and solar irradiance. J. Atmos. Oceanic Technol., 16 , 12391254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suomi, V. E., Sromovsky L. A. , and Anderson J. A. , 1996: Measuring ocean-atmosphere heat flux with a new in-situ sensor. Preprints, Eighth Conf. on Air–Sea Interaction and Symp. on GOALS, Ft. Lauderdale, FL, Amer. Meteor. Soc., 38–42.

  • Sybrandy, A. L., and Niiler P. P. , 1991: The WOCE/TOGA SVP Lagrangian drifter construction manual Scripps Institute of Oceanography, 99 pp.

  • Thadathil, P., Sugimori Y. , and Akiyama M. , 1995: Surface heat flux using satellite observations: A case study in the Northwest Pacific. J. Atmos. Oceanic Technol., 12 , 10711086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ward, B., Wanninkhof R. , Minnett P. J. , and Head M. J. , 2004: SkinDeEP: A profiling instrument for upper-decameter sea surface measurements. J. Atmos. Oceanic Technol., 21 , 207222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wick, G. A., and Jessup A. T. , 1998: Simulation of ocean skin temperature modulation by swell waves. J. Geophys. Res., 103 , 31493161.

  • Wick, G. A., Emery W. J. , Kantha L. H. , and Schlüssel P. , 1996: The behavior of the bulk - skin surface temperature difference under varying wind speed and heat flux. J. Phys. Oceanogr., 26 , 19691988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witting, J., 1971: Effects of plane progressive irrotational waves on thermal boundary layers. J. Fluid Mech., 50 , 321334.

  • Wu, J., 1971: An estimation of oceanic thermal-sublayer thickness. J. Phys. Oceanogr., 1 , 284286.

  • Zappa, C. J., Jessup A. T. , and Yeh H. , 1998: Skin layer recovery of free-surface wakes: Relationship to surface renewal and dependence on heat flux and background turbulence. J. Geophys. Res., 103 , C10. 2171121722.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zappa, C. J., Asher W. E. , and Jessup A. T. , 2001: Microscale wave breaking and air-water gas transfer. J. Geophys. Res., 106 , 93859391.

  • Zappa, C. J., Asher W. E. , Jessup A. T. , Klinke J. , and Long S. R. , 2004: Microbreaking and the enhancement of air-water transfer velocity. J. Geophys. Res., 109 .C08S16, doi:10.1029/2003JC001897.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., Zhao M. , and Dickenson R. E. , 1998: Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J. Climate, 11 , 26282644.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 65 29 3
PDF Downloads 30 12 3

Field Results from a Second-Generation Ocean/Lake Surface Contact Heat Flux, Solar Irradiance, and Temperature Measurement Instrument—The Multisensor Float

View More View Less
  • 1 Department of Physics and Meteorology, Western Connecticut State University, Danbury, Connecticut
Restricted access

Abstract

This paper describes results from two field programs that support development of a wave-following surface contact multisensor float (MSF) designed to simultaneously measure net surface heat flux, net solar irradiance, and water temperature. The results reported herein compare measurements from a second-generation design (circa 1998) against directly measured radiative fluxes as well as turbulent fluxes derived using both eddy correlation and bulk aerodynamic methods. The reference flux data are collected using instrumented towers, buoys, and research vessels. Comparisons show that MSF net surface fluxes and net solar irradiance are in generally good agreement with values that are measured or derived using standard instruments and methods, having root-mean-square differences less than approximately 15%. MSF near-surface bulk water temperature measurement shows good agreement with similar measurements from a drifting buoy. MSF measurement of water surface temperature is not definitively determined, although results suggest it may be a good measure of skin temperature at night.

MSF flux measurement occurs from within the aqueous conductive sublayer and so does not use turbulence models or parameterizations. At this time, results are most reliable in low wind conditions (2 m s−1U10 ≤ 7 m s−1) and relatively calm seas. In higher winds and more active seas, the imperfect surface drifting and wave-following characteristics of the second-generation system limit its performance. More fundamentally, perturbation to the aqueous conductive sublayer and modification of near-surface turbulence structure by the MSF may also limit flux measurement accuracy under certain conditions.

Corresponding author address: J. P. Boyle, Department of Physics and Meteorology, Western Connecticut State University, 181 White Street, Danbury, CT 06810. Email: boylej@wcsu.edu

Abstract

This paper describes results from two field programs that support development of a wave-following surface contact multisensor float (MSF) designed to simultaneously measure net surface heat flux, net solar irradiance, and water temperature. The results reported herein compare measurements from a second-generation design (circa 1998) against directly measured radiative fluxes as well as turbulent fluxes derived using both eddy correlation and bulk aerodynamic methods. The reference flux data are collected using instrumented towers, buoys, and research vessels. Comparisons show that MSF net surface fluxes and net solar irradiance are in generally good agreement with values that are measured or derived using standard instruments and methods, having root-mean-square differences less than approximately 15%. MSF near-surface bulk water temperature measurement shows good agreement with similar measurements from a drifting buoy. MSF measurement of water surface temperature is not definitively determined, although results suggest it may be a good measure of skin temperature at night.

MSF flux measurement occurs from within the aqueous conductive sublayer and so does not use turbulence models or parameterizations. At this time, results are most reliable in low wind conditions (2 m s−1U10 ≤ 7 m s−1) and relatively calm seas. In higher winds and more active seas, the imperfect surface drifting and wave-following characteristics of the second-generation system limit its performance. More fundamentally, perturbation to the aqueous conductive sublayer and modification of near-surface turbulence structure by the MSF may also limit flux measurement accuracy under certain conditions.

Corresponding author address: J. P. Boyle, Department of Physics and Meteorology, Western Connecticut State University, 181 White Street, Danbury, CT 06810. Email: boylej@wcsu.edu

Save