• Brandes, E. A., Ryzhkov A. V. , and Zrnic D. S. , 2001: An evaluation of radar rainfall estimates from specific differential phase. J. Atmos. Oceanic Technol., 18 , 363375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., Zhang G. , and Vivekanandan J. , 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41 , 674685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and Chandrasekar V. , 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and Zrnic D. S. , 1993: Doppler Radar and Weather Observations. 2d ed. Academic Press, 562 pp.

  • Doviak, R. J., Bringi V. , Ryzhkov A. V. , Zahrai A. , and Zrnic D. S. , 2000: Considerations for polarimetric upgrades to operational WSR-88D radars. J. Atmos. Oceanic Technol., 17 , 257278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., and Ryzhkov A. V. , 2003: The quality of rainfall estimation with the polarimetric WSR-88D radar as a function of range. Preprints, 31st Int. Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 357–360.

  • Giangrande, S. E., Ryzhkov A. V. , and Krause J. , 2005: Automatic detection of the melting layer with a polarimetric prototype of the WSR-88D radar. Preprints, 32d Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., CD-ROM, 11R.2.

  • Gosset, M., 2004: Effect of nonuniform beam filling on the propagation of radar signals at X-band frequencies. Part II: Examination of differential phase shift. J. Atmos. Oceanic Technol., 21 , 358367.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herzegh, P. H., and Carbone R. E. , 1984: The influence of antenna illumination function characteristics on differential reflectivity measurements. Preprints, 22d Conf. on Radar Meteorology, Zurich, Switzerland, Amer. Meteor. Soc., 281–286.

  • Le Bouar, E., Testud J. , and Keenan T. D. , 2001: Validation of the rain profiling algorithm “ZPHI” from the C-band polarimetric weather radar in Darwin. J. Atmos. Oceanic Technol., 18 , 18191837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loney, M., Zrnic D. , Straka J. , and Ryzhkov A. , 2002: Enhanced polarimetric radar signatures above the melting level in a supercell storm. J. Appl. Meteor., 41 , 11791194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, P., Keenan T. D. , Zrnic D. , Carey L. , and Rutledge S. , 1999: Polarimetric radar measurements of tropical rain at 5-cm wavelength. J. Appl. Meteor., 38 , 750765.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meischner, P., and Ed., 2004: Weather Radar: Principles and Advanced Applications. Springer, 337 pp.

  • Pointin, Y. C., Ramond C. , and Fournet-Fayard J. , 1988: Radar differential reflectivity: A real-case evaluation of errors induced by antenna characteristics. J. Atmos. Oceanic Technol., 5 , 416423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., 2005: On the use of differential phase for polarimetric rainfall measurements. A new approach to KDP estimation. Preprints, 32d Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., CD-ROM, P9R.8.

  • Ryzhkov, A. V., and Zrnic D. , 1998: Beamwidth effects on the differential phase measurements of rain. J. Atmos. Oceanic Technol., 15 , 624634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and Zrnic D. S. , 2005: Radar polarimetry at S, C, and X bands: Comparative analysis and operational implications. Preprints, 32d Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., CD-ROM, 9R.3.

  • Ryzhkov, A. V., Schuur T. J. , Burgess D. W. , Giangrande S. , and Zrnic D. S. , 2005a: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86 , 809824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., Giangrande S. E. , and Schuur T. J. , 2005b: Rainfall estimation with a polarimetric prototype of the WSR-88D radar. J. Appl. Meteor., 44 , 502515.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 532 310 14
PDF Downloads 601 290 11

The Impact of Beam Broadening on the Quality of Radar Polarimetric Data

View More View Less
  • 1 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
Restricted access

Abstract

The impact of beam broadening on the quality of radar polarimetric data in the presence of nonuniform beam filling (NBF) is examined both theoretically and experimentally. Cross-beam gradients of radar reflectivity Z, differential reflectivity ZDR, and differential phase ΦDP within the radar resolution volume may produce significant biases of ZDR, ΦDP, and the cross-correlation coefficient ρhv. These biases increase with range as a result of progressive broadening of the radar beam. They are also larger at shorter radar wavelengths and wider antenna beams.

Simple analytical formulas are suggested for estimating the NBF-induced biases from the measured vertical and horizontal gradients of Z, ZDR, and ΦDP. Analysis of polarimetric data collected by the KOUN Weather Surveillance Radar-1988 Doppler (WSR-88D) demonstrates that frequently observed perturbations of the radial ΦDP profiles and radially oriented “valleys” of ρhv depression can be qualitatively and quantitatively explained using the suggested NBF model.

Corresponding author address: Alexander V. Ryzhkov, CIMMS/NSSL, 120 David L. Boren Blvd., Norman, OK 73072. Email: Alexander.Ryzhkov@noaa.gov

Abstract

The impact of beam broadening on the quality of radar polarimetric data in the presence of nonuniform beam filling (NBF) is examined both theoretically and experimentally. Cross-beam gradients of radar reflectivity Z, differential reflectivity ZDR, and differential phase ΦDP within the radar resolution volume may produce significant biases of ZDR, ΦDP, and the cross-correlation coefficient ρhv. These biases increase with range as a result of progressive broadening of the radar beam. They are also larger at shorter radar wavelengths and wider antenna beams.

Simple analytical formulas are suggested for estimating the NBF-induced biases from the measured vertical and horizontal gradients of Z, ZDR, and ΦDP. Analysis of polarimetric data collected by the KOUN Weather Surveillance Radar-1988 Doppler (WSR-88D) demonstrates that frequently observed perturbations of the radial ΦDP profiles and radially oriented “valleys” of ρhv depression can be qualitatively and quantitatively explained using the suggested NBF model.

Corresponding author address: Alexander V. Ryzhkov, CIMMS/NSSL, 120 David L. Boren Blvd., Norman, OK 73072. Email: Alexander.Ryzhkov@noaa.gov

Save