• Ashkin, A., 1970: Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett., 24 , 156159.

  • Ashkin, A., and Dziedzic J. M. , 1971: Optical levitation by radiation pressure. Appl. Phys. Lett., 19 , 283285.

  • Bachert, R., 1981: Zeitliches und kleinräumiges Verhalten von Tropfengrößenverteilungen in Nebeln und Wolken—Aufbau und Eichung einer Meßapparatur—Erste Messungen (Temporal and spatial behavior of droplet size distributions in fogs and clouds —Building up and calibration of the measurement equipment—First measurements). M.S. thesis, Institute for Meteorology, Johannes Gutenberg University of Mainz, 195 pp.

  • Baumgardner, D., and Spowart M. , 1990: Evaluation of the Forward Scattering Spectrometer Probe. Part III: Time response and laser inhomogeneity limitations. J. Atmos. Oceanic Technol., 7 , 666672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., and Korolev A. , 1997: Airspeed corrections for optical array probe sample volumes. J. Atmos. Oceanic Technol., 14 , 12241229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., Dye J. E. , and Gandrud B. W. , 1989: Calibration of the Forward Scattering Spectrometer Probe used on the ER-2 during the Airborne Antarctic Ozone Experiment. J. Geophys. Res., 94 , D14. 1647516480.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgardner, D., Dye J. E. , Gandrud B. W. , and Knollenberg R. G. , 1992: Interpretation of measurements made by the Forward Scattering Spectrometer Probe (FSSP-300) during the Airborne Arctic Stratospheric Expedition. J. Geophys. Res., 97 , D8. 80358046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenguier, J. L., 1989: Coincidence and dead-time corrections for particle counters. Part II: High concentration measurements with an FSSP. J. Atmos. Oceanic Technol., 6 , 585598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenguier, J. L., and Amodei L. , 1989: Coincidence and dead-time corrections for particle counters. Part I: A general mathematical formalism. J. Atmos. Oceanic Technol., 6 , 575584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenguier, J. L., Rodi A. R. , Gordon G. , and Wechsler P. , 1993: Real-time detection of performance degradation of the Forward-Scattering Spectrometer Probe. J. Atmos. Oceanic Technol., 10 , 2733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenguier, J. L., Bourrianne T. , Coelho A. , Isbert J. , Peytavi R. , Trevarin D. , and Wechsler P. , 1998: Improvements of droplet size distribution measurements with the Fast-FSSP (Forward Scattering Spectrometer Probe). J. Atmos. Oceanic Technol., 15 , 10771090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cerni, T. A., 1983: Determination of size and concentration of cloud drops with an FSSP. J. Climate Appl. Meteor., 22 , 13461355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1988: Effects of coincidence on measurements with a Forward Scattering Spectrometer Probe. J. Atmos. Oceanic Technol., 5 , 823832.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Gans, B-J., Kazancioglu E. , Meyer W. , and Schubert U. , 2004: Ink-jet printing polymers and polymer libraries using micropipettes. Macromol. Rapid Commun., 292296.

    • Search Google Scholar
    • Export Citation
  • DMT, 1994: Forward Scattering Spectrometer Probe (FSSP) calibration and maintenance procedures manual. Droplet Measurement Technologies, 60 pp.

  • Dye, J. E., and Baumgardner D. , 1984: Evaluation of the Forward Scattering Spectrometer Probe. Part I: Electronic and optical studies. J. Atmos. Oceanic Technol., 1 , 329344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and Baumgardner D. , 1985: Summary of a workshop on processing 2-D probe data. Bull. Amer. Meteor. Soc., 66 , 437440.

  • Hovenac, E. A., and Hirleman E. D. , 1991: Use of rotating pinholes and reticles for calibration of cloud droplet instrumentation. J. Atmos. Oceanic Technol., 8 , 166171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hovenac, E. A., and Lock J. A. , 1993: Calibration of the Forward-Scattering Spectrometer Probe: Modeling scattering from a multimode laser beam. J. Atmos. Oceanic Technol., 10 , 518525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, J. B., and Granek H. , 2002: Optoelectronic simulation of the PMS 260X optical array probe and application to drizzle in a marine stratocumulus. J. Atmos. Oceanic Technol., 19 , 568585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keil, A., 1995: Charakterisierung optischer Wolken- und Niederschlagsmessgeräte mit monodispersen Tropfen (Characterization of optical cloud and precipitation measurement devices with monodisperse droplets). Diploma thesis, Institute for Meteorology, University of Leipzig, 74 pp.

  • Korolev, A. V., Makarov Yu E. , and Novikov V. S. , 1985a: On the accuracy of photoelectric cloud droplet spectrometer FSSP-100 (in Russian). Tr. Tsentr. Aerol. Obs., 158 , 3242. [English translation available online at http://www.skytechresearch.com/news.htm.].

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., Makarov Yu E. , and Novikov V. S. , 1985b: On the calibration of photoelectric cloud droplet spectrometer FSSP-100 (in Russian). Tr. Tsentr. Aerol. Obs., 158 , 4349. [English translation available online at http://www.skytechresearch.com/news.htm.].

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., Kusnetzov S. V. , Makarov E. , and Novikov V. S. , 1991: Evaluation of measurements of particle size and sample area from optical array probes. J. Atmos. Oceanic Technol., 8 , 514522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., Strapp J. W. , and Isaac G. A. , 1998: On the accuracy of PMS optical array probes. J. Atmos. Oceanic Technol., 15 , 708720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindblad, N. R., and Schneider J. M. , 1965: Production of uniform-sized liquid droplets. J. Sci. Instrum., 42 , 635638.

  • Meyer, W., and Döring M. , 1999: Liquid handling in the pico- and nanoliter range, microreaction technology: Industrial prospects. Proc. Third Int. Conf. on Microreaction Technology, Frankfurt, Germany, DECHEMA and IMM, 312–319.

    • Crossref
    • Export Citation
  • PMS, 1994: Suggested techniques for PMS hard seal laser replacement, calibration, beam diameter, and depth of field measurement. Particle Measuring Systems, Inc., Manual 5012-2, 12 pp.

  • Roll, G., Kaiser T. , and Schweiger G. , 1996: Optical trap sedimentation cell—A new technique for the sizing of microparticles. J. Aerosol Sci., 27 , 105117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, J. M., and Hendricks C. D. , 1964: Source of uniform-sized liquid droplets. Rev. Sci. Instrum., 35 , 13491350.

  • Smedley, A. R. D., Saunders G. P. R. , and Webb A. R. , 2003: Small-particle size determination by optical array probe oversampling. J. Atmos. Oceanic Technol., 20 , 15681575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strapp, J. W., Albers F. , Reuter A. , Korolev A. V. , Maixner U. , and Raschke E. , 2001: Laboratory measurements of the response of a PMS OAP-2DC. J. Atmos. Oceanic Technol., 18 , 11501170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wendisch, M., Keil A. , and Korolev A. V. , 1996: FSSP characterization with monodisperse water droplets. J. Atmos. Oceanic Technol., 13 , 11521165.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 162 94 5
PDF Downloads 76 39 0

Advancements in Techniques for Calibration and Characterization of In Situ Optical Particle Measuring Probes, and Applications to the FSSP-100 Probe

View More View Less
  • 1 Geesthacht, Germany
  • | 2 Barum, Germany
  • | 3 Environment Canada, Downsview, Ontario, Canada
Restricted access

Abstract

Advancements in techniques for the operational calibration and characterization of instrument performance of the Particle Measuring Systems, Inc. (PMS), forward scattering spectrometer probe (FSSP) and optical array probes (OAPs) are presented, which also can be used for most in situ particle-measuring optical probes on the market. These techniques include the determination of a distortion matrix to correct for instrumental broadening of the measured particle size distribution. A new version of a monodisperse droplet generator is introduced for absolute calibration in the size range between 10 and 100 μm. In addition, a high-speed technique was employed for the determination of airspeed influence on the sample volume and the sizing of particles.

The calibration of a PMS FSSP with real water droplets may be significantly different from the usual calibration with glass beads. High-speed measurements simulate particles at speeds of up to about 250 m s−1. Particle undersizing and the decrease of the sample volume with increasing airspeed are described. The use of the modular tools, built for this work, is discussed for probe alignment, functionality checks, and general characterization and diagnostics both in laboratory and field environments.

Corresponding author address: Dagmar Nagel, Binsenstieg 37, D-21502 Geesthacht, Germany. Email: daggi_nagel@yahoo.de

Abstract

Advancements in techniques for the operational calibration and characterization of instrument performance of the Particle Measuring Systems, Inc. (PMS), forward scattering spectrometer probe (FSSP) and optical array probes (OAPs) are presented, which also can be used for most in situ particle-measuring optical probes on the market. These techniques include the determination of a distortion matrix to correct for instrumental broadening of the measured particle size distribution. A new version of a monodisperse droplet generator is introduced for absolute calibration in the size range between 10 and 100 μm. In addition, a high-speed technique was employed for the determination of airspeed influence on the sample volume and the sizing of particles.

The calibration of a PMS FSSP with real water droplets may be significantly different from the usual calibration with glass beads. High-speed measurements simulate particles at speeds of up to about 250 m s−1. Particle undersizing and the decrease of the sample volume with increasing airspeed are described. The use of the modular tools, built for this work, is discussed for probe alignment, functionality checks, and general characterization and diagnostics both in laboratory and field environments.

Corresponding author address: Dagmar Nagel, Binsenstieg 37, D-21502 Geesthacht, Germany. Email: daggi_nagel@yahoo.de

Save