• Boers, R., Spinhirne J. D. , and Hart W. D. , 1988: Lidar observations of the fine-scale variability of marine stratocumulus clouds. J. Appl. Meteor., 27 , 797810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bösenberg, J., and Coauthors, 2003: EARLINET: A European Aerosol Research Lidar Network to Establish an Aerosol Climatology. MPI Rep. 348, Max-Planck-Institut für Meteorologie, Hamburg, Germany, 192 pp.

  • Brooks, I. M., 2003: Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles. J. Atmos. Oceanic Technol., 20 , 10921105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cadet, B., Goldfarb L. , Faduilhe D. , Baldy S. , Giraud V. , Keckhut P. , and Réchou A. , 2003: A sub-tropical cirrus clouds climatology from Reunion Island (21°S, 55°E) lidar data set. Geophys. Res. Lett., 30 .1130, doi:10.1029/2002GL016342.

    • Search Google Scholar
    • Export Citation
  • Cadet, B., Giraud V. , Haeffelin M. , Keckhut P. , Rechou A. , and Baldy S. , 2005: Improved retrievals of cirrus cloud optical properties using a combination of lidar methods. Appl. Opt., 44 , 17261734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chazette, P., Pelon J. , and Mégie G. , 2001: Determination by spaceborne backscatter lidar of the structural parameters of atmospheric scattering layers. Appl. Opt., 40 , 34283440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiriaco, M., Chepfer H. , Noel V. , Delaval A. , Haeffelin M. , Dubuisson P. , and Yang P. , 2004: Improving retrievals of cirrus cloud particle size coupling lidar and three-channel radiometric techniques. Mon. Wea. Rev., 132 , 16841700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., Mace G. , Ackerman T. , Kane T. , Spinhirne J. , and Scott V. , 1998: An automated algorithm for detection of hydrometeor returns in micropulse lidar data. J. Atmos. Oceanic Technol., 15 , 10351042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohn, S. A., and Angevine W. M. , 2000: Boundary-layer height and entrainment zone thickness measured by lidars and wind-profiling radars. J. Appl. Meteor., 39 , 12331247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., Ackerman T. P. , and Mace G. G. , 2002: Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: Cloud statistics and radiative impacts. J. Geophys. Res., 107 .4714, doi:10.1029/2002JD002203.

    • Search Google Scholar
    • Export Citation
  • Durieux, E., and Fiorani L. , 1998: Measurement of the lidar signal fluctuation with a shot-per-shot instrument. Appl. Opt., 37 , 71287131.

  • Flamant, C., Pelon J. , Flamant P. H. , and Durand P. , 1997: Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary layer. Bound.-Layer Meteor., 83 , 247284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haeffelin, M., and Coauthors, 2005: SIRTA, a ground-based atmospheric observatory for cloud and aerosol research. Ann. Geophys., 23 , 253275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodzic, A., and Coauthors, 2004: Comparison of aerosol chemistry transport model simulations with lidar and Sun photometer observations at a site near Paris. J. Geophys. Res., 109 .D23201, doi:10.1029/2004JD004735.

    • Search Google Scholar
    • Export Citation
  • Hoff, R. M., and McCann K. J. , 2002: A Regional East Atmospheric Lidar Mesonet (REALM). Eos, Trans. Amer. Geophys. Union, 83 (Fall Meeting Suppl.), A22C-0147.

  • Mallat, S. G., and Hwang W. L. , 1992: Singularity detection and processing with wavelets. IEEE Trans. Inf. Theory, 38 , 617643.

  • Mathieu, A., Piriou J-M. , Haeffelin M. , Drobinski P. , Vinit F. , and Bouyssel F. , 2006: Identification of error sources in convective planetary boundary layer cloud forecast using SIRTA observations. Geophys. Res. Lett., 33 .L19812, doi:10.1029/2006GL026001.

    • Search Google Scholar
    • Export Citation
  • Melfi, S. H., Sphinhirne J. D. , Chou S. H. , and Palm S. P. , 1985: Lidar observations of the vertically organized convection in the planetary boundary layer over the ocean. J. Climate Appl. Meteor., 24 , 806821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menut, L., Flamant C. , Pelon J. , and Flamant P. H. , 1999: Urban boundary layer height determination from lidar measurements over the Paris area. Appl. Opt., 38 , 945954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naud, N., Haeffelin M. , Muller P. , Morille Y. , and Delaval A. , 2004: Assessment of MISR and MODIS cloud top heights through comparison with a back-scattering lidar at SIRTA. Geophys. Res. Lett., 31 .L04114, doi:10.1029/2003GL018976.

    • Search Google Scholar
    • Export Citation
  • Pal, S. R., Steinbrecht W. , and Carswell A. I. , 1992: Automated method for lidar determination of cloud base height and vertical extent. Appl. Opt., 34 , 23882399.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M., 1979: Remote sounding of high clouds: I. Calculation of visible and infrared optical properties from lidar and radiometer measurements. J. Appl. Meteor., 18 , 11301143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platt, C. M., and Coauthors, 1994: The Experimental Cloud Lidar Pilot Study (ECLIPS) for cloud–radiation research. Bull. Amer. Meteor. Soc., 75 , 16351654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., and Campbell J. R. , 2001: A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part I: Macrophysical and synoptic properties. J. Atmos. Sci., 58 , 481496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., Griffin M. , and Dodd G. , 1989: Optical scattering and microphysical properties of subvisual cirrus clouds, and climatic implications. J. Appl. Meteor., 28 , 9198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shimizu, A., and Coauthors, 2004: Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia. J. Geophys. Res., 109 .D19S17, doi:10.1029/2002JD003253.

    • Search Google Scholar
    • Export Citation
  • Vogelezang, D. H. P., and Holtslag A. A. M. , 1996: Evaluation and model impacts of alternative boundary-layer height formulations. Bound.-Layer Meteor., 81 , 245269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Sassen K. , 2001: Cloud type and macrophysical property retrieval using multiple remote sensors. J. Appl. Meteor., 40 , 16651682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welton, E. J., Campbell J. R. , Spinhirne J. D. , and Scott V. S. , 2001: Global monitoring of clouds and aerosols using a network of micro-pulse lidar systems. Proc. SPIE, 4153 , 151158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D., Pelon J. , and McCormick P. , 2003: The CALIPSO mission: Spaceborne Lidar for observations of aerosols and clouds. Proc. SPIE, 4893 , 111.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 431 246 32
PDF Downloads 319 176 25

STRAT: An Automated Algorithm to Retrieve the Vertical Structure of the Atmosphere from Single-Channel Lidar Data

View More View Less
  • 1 Laboratoire de Météorologie Dynamique, Institut Pierre-Simon Laplace, Palaiseau, France
  • | 2 Institut Pierre-Simon Laplace, Palaiseau, France
  • | 3 Service d’Aéronomie, Institut Pierre-Simon Laplace, Paris, France
Restricted access

Abstract

Today several lidar networks around the world provide large datasets that are extremely valuable for aerosol and cloud research. Retrieval of atmospheric constituent properties from lidar profiles requires detailed analysis of spatial and temporal variations of the signal. This paper presents an algorithm called Structure of the Atmosphere (STRAT), which is designed to retrieve the vertical distribution of cloud and aerosol layers in the boundary layer and through the free troposphere and to identify near-particle-free regions of the vertical profile and the range at which the lidar signal becomes too attenuated for exploitation, from a single lidar channel. The paper describes each detection method used in the STRAT algorithm and its application to a tropospheric backscatter lidar operated at the SIRTA observatory, in Palaiseau, 20 km south of Paris, France. STRAT retrievals are compared to other means of layer detection and classification; retrieval performances and uncertainties are discussed.

Corresponding author address: Y. Morille, Laboratoire de Météorologie Dynamique, Institut Pierre-Simon Laplace, Ecole Polytechnique, 91128 Palaiseau CEDEX, France. Email: morille@lmd.polytechnique.fr

Abstract

Today several lidar networks around the world provide large datasets that are extremely valuable for aerosol and cloud research. Retrieval of atmospheric constituent properties from lidar profiles requires detailed analysis of spatial and temporal variations of the signal. This paper presents an algorithm called Structure of the Atmosphere (STRAT), which is designed to retrieve the vertical distribution of cloud and aerosol layers in the boundary layer and through the free troposphere and to identify near-particle-free regions of the vertical profile and the range at which the lidar signal becomes too attenuated for exploitation, from a single lidar channel. The paper describes each detection method used in the STRAT algorithm and its application to a tropospheric backscatter lidar operated at the SIRTA observatory, in Palaiseau, 20 km south of Paris, France. STRAT retrievals are compared to other means of layer detection and classification; retrieval performances and uncertainties are discussed.

Corresponding author address: Y. Morille, Laboratoire de Météorologie Dynamique, Institut Pierre-Simon Laplace, Ecole Polytechnique, 91128 Palaiseau CEDEX, France. Email: morille@lmd.polytechnique.fr

Save