• Aksoy, B., 1999: Analysis of changes in sunshine duration data for Ankara, Turkey. Theor. Appl. Climatol., 64 , 229237.

  • Al-Sadah, F. H., and Ragab F. M. , 1991: Study of global daily solar radiation and its relation to sunshine duration in Bahrain. Solar Energy, 47 , 115119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angell, J. K., 1990: Variation in United States cloudiness and sunshine duration between 1950 and the drought year of 1988. J. Climate, 3 , 296308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angell, J. K., and Korshover J. , 1975: Variation in sunshine duration over the contiguous United States between 1950 and 1972. J. Appl. Meteor., 14 , 11741181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angell, J. K., and Korshover J. , 1978: A recent increase in sunshine duration within the contiguous United States. J. Appl. Meteor., 17 , 819824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ångström, A., 1924: Solar and terrestrial radiation. Quart. J. Roy. Meteor. Soc., 50 , 121125.

  • Bergman, U., 1993: Het programma voor berekening van zonneschijnduur uit globale straling (The code for calculating sunshine duration from global irradiance). KNMI Tech. Rep. TR–158, 16 pp.

  • Coulson, K. L., 1975: Duration of sunshine. Solar and Terrestrial Radiation, Academic Press, 322 pp.

  • El-Metwally, M., 2005: Sunshine and global solar radiation estimation at different sites in Egypt. J. Atmos. Solar-Terr. Phys., 67 , 13311342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Essa, K. S., and Etman S. M. , 2004: On the relation between cloud cover amount and sunshine duration. Meteor. Atmos. Phys., 87 , 235240.

  • Forgan, B. W., 2005: Sunshine duration uncertainty from BSRN minute statistics. Report of the 8th Baseline Surface Radiation Network (BSRN) Workshop and Scientific Review (Exeter, United Kingdom), WCRP Informal Rep. 4/2005, 68 pp.

  • Frantzen, A. J., and Raaff W. R. , 1982: De relatie tussen de globale straling en de relatieve zonneschijnduur in Nederland. (The relation between the global irradiance and the relative sunshine duration in the Netherlands). KNMI Scientific Rep. WR-82-5, 22 pp.

  • Gopinathan, K. K., 1988: A general formula for computing the coefficients of the correlation connecting global solar radiation to sunshine duration. Solar Energy, 41 , 499502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heijboer, D., and Nellestijn J. , 2002: Klimaatatlas van Nederland (Climate Atlas of the Netherlands). KNMI, 182 pp.

  • Hinssen, Y. B. L., 2006: Comparison of different methods for the determination of sunshine duration. KNMI Scientific Rep. WR–2006-06, 72 pp.

  • Hussain, M., Rahman L. , and Rahman M. , 1999: Techniques to obtain improved predictions of global radiation from sunshine duration. Renewable Energy, 18 , 263275.

    • Search Google Scholar
    • Export Citation
  • Iqbal, M., 1983: An Introduction to Solar Radiation. Academic Press, 390 pp.

  • Kaiser, D. P., and Qian Y. , 2002: Decreasing trends in sunshine duration over China for 1954-1998: Indication of increased haze pollution? Geophys. Res. Lett., 29 .2041, doi:10.1029/2002GL016057.

    • Search Google Scholar
    • Export Citation
  • Kasten, F., 1980: A simple parameterization of the pyrheliometric formula for determining the Linke turbidity factor. Meteor. Rundsch., 33 , 124127.

    • Search Google Scholar
    • Export Citation
  • Linke, F., 1922: Transmissions-koeffizient und trübungsfaktor (Transmission coeffictient and turbidity factor). Beitr. Phys. Atmos., 10 , 91103.

    • Search Google Scholar
    • Export Citation
  • Liou, K. N., 2002: An Introduction to Atmospheric Radiation. Academic Press, 583 pp.

  • Long, C. N., and Dutton E. G. , 2002: BSRN global network recommended QC tests, V2.0. BSRN Tech. Rep., 3 pp. [Available online at http://ezksun3.ethz.ch/bsrn/admin/dokus/qualitycheck.pdf.].

  • McArthur, L. J. B., 2005: WCRP/BSRN operations manual version 2.1. WCRP-121, WMO Tech. Doc. 1274, 176 pp.

  • Michalsky, J. J., 1988: The astronomical almanac’s algorithm for approximate solar position (1950–2050). Solar Energy, 40 , 227235.

  • Michalsky, J. J., 1992: Comparison of a National Weather Service Foster sunshine recorder and the World Meteorological Organization standard for sunshine duration. Solar Energy, 48 , 133141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohnl, H., and Koch E. , 2006: Comparison between AWS registered sunshine duration and the traditional Campbell-Stokes. Proc. Fourth ICEAWS, Lisbon, Portugal, WMO, 6 pp. [Available online at http://web.meteo.pt/resources/im/pdfs/publicacoes/iceaws/ORAL/38_Oral.pdf.].

  • Ohmura, A., and Coauthors, 1998: Baseline Surface Radiation Network (BSRN/WCRP): New precision radiometry for climate research. Bull. Amer. Meteor. Soc., 79 , 21152136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliviéri, J. C., 1998: Sunshine duration measurement using a pyranometer. World Meteorological Organization, Instruments and Observing Methods Rep. 70, WMO Tech. Doc. 877, 385 pp.

  • Pallé, E., and Butler C. J. , 2002: Comparison of sunshine records and synoptic cloud observations: A case study for Ireland. Phys. Chem. Earth, 27 , 405414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, H. C., 2003: Trends in solar radiation over Germany and an assessment of the role of aerosols and sunshine duration. Theor. Appl. Climatol., 76 , 4763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahim, R., Baharuddin R. , and Mulyadi R. , 2004: Classification of daylight and radiation data into three sky conditions by cloud ratio and sunshine duration. Energy Buildings, 36 , 660666.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schipper, J., 2004: Vergelijking van diverse methodes voor de berekening van zonneschijnduur uit globale straling. (Comparison of various methods for the computation of sunshine duration from global irradiance). KNMI Tech. Rep. TR–258, 40 pp.

  • Slob, W. H., and Monna W. A. A. , 1991: Bepaling van directe en diffuse straling en van zonneschijnduur uit 10-minuutwaarden van de globale straling (Determination of direct and diffuse irradiance and sunshine duration from 10-minute values of the global irradiance). KNMI Tech. Rep. TR–136, 31 pp.

  • Stanghellini, C., 1981: A simple method for evaluating sunshine duration by cloudiness observations. J. Appl. Meteor., 20 , 320323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stanhill, G., and Cohen S. , 2005: Solar radiation changes in the United States during the twentieth century: Evidence from sunshine duration measurements. J. Climate, 18 , 15031512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiba, C., and Fraidenraich N. , 2004: Analysis of monthly time series of solar radiation and sunshine hours in tropical climates. Renewable Energy, 29 , 11471160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velds, C. A., 1992: Zonnestraling in Nederland (Solar Radiation in the Netherlands). Thieme/KNMI, 166 pp.

  • Winston, J. S., 1976: Comments on “Variation in sunshine duration over the contiguous United States between 1950 and 1972.”. J. Appl. Meteor., 15 , 414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 2006: Measurement of sunshine duration. Part I: Measurement of Meteorological Variables. World Meteorological Organization (WMO) Guide to Meteorological Instruments and Methods of Observation, 7th ed., Secretariat of the World Meteorological Organization, in press.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 241 118 5
PDF Downloads 197 82 1

Comparison of Pyranometric and Pyrheliometric Methods for the Determination of Sunshine Duration

View More View Less
  • 1 Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands
Restricted access

Abstract

Two pyranometric methods for the determination of sunshine duration (SD) from global irradiance measurements are evaluated by means of summated sunshine seconds derived from pyrheliometric measurements in combination with the WMO threshold of 120 W m−2 for the direct solar irradiance. The evaluation is performed using direct and global radiation measurements made at the Cabauw Baseline Surface Radiation Network (BSRN) site in the Netherlands for the period March 2005–February 2006. The “Slob algorithm” uses 10-min mean and extreme values of the measured global irradiance and parameterized estimates of the direct and diffuse irradiance. The “correlation algorithm” directly relates SD to 10-min mean measurements of global irradiance. The cumulative pyrheliometric SD for the mentioned period is 1429 h. Relative to this value, the Slob algorithm and correlation algorithm give −72 h (−5%) and +8 h (+0.6%). On a daily mean basis, the values are −0.22 ± 0.05 h day−1 and 0.03 ± 0.03 h day−1, respectively. By means of tuning the irradiance parameterizations of the Slob algorithm, the yearly cumulative and daily mean differences can be reduced to +7 h (+0.5%) and 0.02 ± 0.04 h day−1, respectively. It is concluded that, by use of either algorithm, it is possible to estimate daily sums of SD from 10-min mean measurements of global irradiance with a typical uncertainty of 0.5–0.7 h day−1. For yearly sums, the uncertainty typically amounts to 0.5%.

* Current affiliation: Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands

Corresponding author address: Wouter H. Knap, Royal Netherlands Meteorological Institute (KNMI), P.O. Box 201, 3730 AE De Bilt, Netherlands. Email: knap@knmi.nl

Abstract

Two pyranometric methods for the determination of sunshine duration (SD) from global irradiance measurements are evaluated by means of summated sunshine seconds derived from pyrheliometric measurements in combination with the WMO threshold of 120 W m−2 for the direct solar irradiance. The evaluation is performed using direct and global radiation measurements made at the Cabauw Baseline Surface Radiation Network (BSRN) site in the Netherlands for the period March 2005–February 2006. The “Slob algorithm” uses 10-min mean and extreme values of the measured global irradiance and parameterized estimates of the direct and diffuse irradiance. The “correlation algorithm” directly relates SD to 10-min mean measurements of global irradiance. The cumulative pyrheliometric SD for the mentioned period is 1429 h. Relative to this value, the Slob algorithm and correlation algorithm give −72 h (−5%) and +8 h (+0.6%). On a daily mean basis, the values are −0.22 ± 0.05 h day−1 and 0.03 ± 0.03 h day−1, respectively. By means of tuning the irradiance parameterizations of the Slob algorithm, the yearly cumulative and daily mean differences can be reduced to +7 h (+0.5%) and 0.02 ± 0.04 h day−1, respectively. It is concluded that, by use of either algorithm, it is possible to estimate daily sums of SD from 10-min mean measurements of global irradiance with a typical uncertainty of 0.5–0.7 h day−1. For yearly sums, the uncertainty typically amounts to 0.5%.

* Current affiliation: Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands

Corresponding author address: Wouter H. Knap, Royal Netherlands Meteorological Institute (KNMI), P.O. Box 201, 3730 AE De Bilt, Netherlands. Email: knap@knmi.nl

Save