The Atmospheric Radiation Measurement Program Cloud Profiling Radars: Second-Generation Sampling Strategies, Processing, and Cloud Data Products

Pavlos Kollias Atmospheric Science Division, Brookhaven National Laboratory, Upton, New York

Search for other papers by Pavlos Kollias in
Current site
Google Scholar
PubMed
Close
,
Mark A. Miller Atmospheric Science Division, Brookhaven National Laboratory, Upton, New York

Search for other papers by Mark A. Miller in
Current site
Google Scholar
PubMed
Close
,
Edward P. Luke Atmospheric Science Division, Brookhaven National Laboratory, Upton, New York

Search for other papers by Edward P. Luke in
Current site
Google Scholar
PubMed
Close
,
Karen L. Johnson Atmospheric Science Division, Brookhaven National Laboratory, Upton, New York

Search for other papers by Karen L. Johnson in
Current site
Google Scholar
PubMed
Close
,
Eugene E. Clothiaux Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Eugene E. Clothiaux in
Current site
Google Scholar
PubMed
Close
,
Kenneth P. Moran NOAA/ESRL/Physical Sciences Division, Boulder, Colorado

Search for other papers by Kenneth P. Moran in
Current site
Google Scholar
PubMed
Close
,
Kevin B. Widener Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Kevin B. Widener in
Current site
Google Scholar
PubMed
Close
, and
Bruce A. Albrecht Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Bruce A. Albrecht in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program operates millimeter-wavelength cloud radars in several climatologically distinct regions. The digital signal processors for these radars were recently upgraded and allow for enhancements in the operational parameters running on them. Recent evaluations of millimeter-wavelength cloud radar signal processing performance relative to the range of cloud dynamical and microphysical conditions encountered at the ARM Program sites have indicated that improvements are necessary, including significant improvement in temporal resolution (i.e., less than 1 s for dwell and 2 s for dwell and processing), wider Nyquist velocities, operational dealiasing of the recorded spectra, removal of pulse compression while sampling the boundary layer, and continuous recording of Doppler spectra. A new set of millimeter-wavelength cloud radar operational modes that incorporate these enhancements is presented. A significant change in radar sampling is the introduction of an uneven mode sequence with 50% of the sampling time dedicated to the lower atmosphere, allowing for detailed characterization of boundary layer clouds. The changes in the operational modes have a substantial impact on the postprocessing algorithms that are used to extract cloud information from the radar data. New methods for postprocessing of recorded Doppler spectra are presented that result in more accurate identification of radar clutter (e.g., insects) and extraction of turbulence and microphysical information. Results of recent studies on the error characteristics of derived Doppler moments are included so that uncertainty estimates are now included with the moments. The microscale data product based on the increased temporal resolution of the millimeter-wavelength cloud radars is described. It contains the number of local maxima in each Doppler spectrum, the Doppler moments of the primary peak, uncertainty estimates for the Doppler moments of the primary peak, Doppler moment shape parameters (e.g., skewness and kurtosis), and clear-air clutter flags.

** Current affiliation: Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Corresponding author address: Pavlos Kollias, Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, QC H3A 2K6, Canada. Email: pavlos.kollias@mcgill.ca

Abstract

The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program operates millimeter-wavelength cloud radars in several climatologically distinct regions. The digital signal processors for these radars were recently upgraded and allow for enhancements in the operational parameters running on them. Recent evaluations of millimeter-wavelength cloud radar signal processing performance relative to the range of cloud dynamical and microphysical conditions encountered at the ARM Program sites have indicated that improvements are necessary, including significant improvement in temporal resolution (i.e., less than 1 s for dwell and 2 s for dwell and processing), wider Nyquist velocities, operational dealiasing of the recorded spectra, removal of pulse compression while sampling the boundary layer, and continuous recording of Doppler spectra. A new set of millimeter-wavelength cloud radar operational modes that incorporate these enhancements is presented. A significant change in radar sampling is the introduction of an uneven mode sequence with 50% of the sampling time dedicated to the lower atmosphere, allowing for detailed characterization of boundary layer clouds. The changes in the operational modes have a substantial impact on the postprocessing algorithms that are used to extract cloud information from the radar data. New methods for postprocessing of recorded Doppler spectra are presented that result in more accurate identification of radar clutter (e.g., insects) and extraction of turbulence and microphysical information. Results of recent studies on the error characteristics of derived Doppler moments are included so that uncertainty estimates are now included with the moments. The microscale data product based on the increased temporal resolution of the millimeter-wavelength cloud radars is described. It contains the number of local maxima in each Doppler spectrum, the Doppler moments of the primary peak, uncertainty estimates for the Doppler moments of the primary peak, Doppler moment shape parameters (e.g., skewness and kurtosis), and clear-air clutter flags.

** Current affiliation: Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Corresponding author address: Pavlos Kollias, Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, QC H3A 2K6, Canada. Email: pavlos.kollias@mcgill.ca

Save
  • Ackerman, T. P., and Stokes G. , 2003: The Atmospheric Radiation Measurement Program. Phys. Today, 56 , 3845.

  • Albrecht, B. A., and Kollias P. , 1999: Observations of tropical cloud systems with a mm-wavelength cloud radar—An overview. Preprints, 29th Int. Conf. on Radar Meteorology, Montreal, QC, Canada, Amer. Meteor. Soc., 454–456.

  • Barber, N. F., 1947: Narrow band-pass filter using modulation. Wireless Eng., 24 , 132134.

  • Clothiaux, E. E., Penc R. S. , Thomson D. W. , Ackerman T. P. , and Williams S. R. , 1994: A first-guess feature-based algorithm for estimating wind speed in clear-air Doppler radar spectra. J. Atmos. Oceanic Technol., 11 , 888908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., Miller M. A. , Albrecht B. A. , Ackerman T. P. , Verlinde J. , Babb D. M. , Peters R. M. , and Syrett W. J. , 1995: An evaluation of a 94-GHz radar for remote sensing of cloud properties. J. Atmos. Oceanic Technol., 12 , 201229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., and Coauthors, 1999: The Atmospheric Radiation Measurement Program cloud radars: Operational modes. J. Atmos. Oceanic Technol., 16 , 819827.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., Ackerman T. P. , Mace G. G. , Moran K. P. , Marchand R. T. , Miller M. A. , and Martner B. E. , 2000: Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. J. Appl. Meteor., 39 , 645665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and Zrnic D. S. , 1993: Doppler Radar and Weather Observations. 2d ed. Academic Press, 592 pp.

  • Firda, J. M., Sekelsky S. M. , and McIntosh R. E. , 1999: Application of dual-frequency millimeter-wave Doppler spectra for the retrieval of drop size distributions and vertical air motion in rain. J. Atmos. Oceanic Technol., 16 , 216236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gossard, E. E., Snider J. B. , Clothiaux E. E. , Martner B. , Gibson J. S. , Kropfli R. A. , and Frisch A. S. , 1997: The potential of 8-mm radars for remotely sensing cloud drop size distributions. J. Atmos. Oceanic Technol., 14 , 7687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., and Sekhon R. S. , 1974: Objective determination of the noise level in Doppler spectra. J. Appl. Meteor., 13 , 808811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., 1987: Relations among linear and circular polarization parameters measured in canted hydrometeors. J. Atmos. Oceanic Technol., 4 , 634645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., Mace G. G. , Clothiaux E. E. , Liljegren J. C. , and Austin R. T. , 2001: Doppler cloud radar derived drop size distribution in liquid water stratus clouds. J. Atmos. Sci., 58 , 28952911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P., Albrecht B. A. , Lhermitte R. , and Savtchenko A. , 2001: Radar observations of updrafts, downdrafts, and turbulence in fair-weather cumuli. J. Atmos. Sci., 58 , 17501766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P., Albrecht B. A. , and Marks F. Jr., 2002: Why Mie? Accurate observations of vertical air velocities and raindrops using a cloud radar. Bull. Amer. Meteor. Soc., 83 , 14711483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P., Albrecht B. A. , and Marks F. Jr, 2003: Cloud radar observations of vertical drafts and microphysics in convective rain. J. Geophys. Res., 108 .4053, doi:10.1029/2001JD002033.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., Clothiaux E. E. , Albrecht B. A. , Miller M. A. , Moran K. P. , and Johnson K. L. , 2005: The Atmospheric Radiation Measurement Program cloud profiling radars. An evaluation of signal processing and sampling strategies. J. Atmos. Oceanic Technol., 22 , 930948.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P., Luke E. , Miller M. , and Albrecht B. A. , 2006: Radar Doppler spectra recording at the ARM sites: An insight to cloud microphysics and turbulence. Proc. Fourth European Conf. on Radar Meteorology and Hydrology, Barcelona, Spain, Copernicus Online Service and Information System (COSIS), 233–235.

  • Lhermitte, R., 1988: Observations of rain at vertical incidence with a 94 GHz Doppler radar: An insight of Mie scattering. Geophys. Res. Lett., 15 , 11251128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luke, E., Kollias P. , and Johnson K. L. , 2006: A method for the automatic detection of insect clutter in Doppler-radar returns. Proc. Seventh Int. Symp. on Tropospheric Profiling, Boulder, CO, NCAR, 431–432.

  • Matrosov, S. Y., Reinking R. F. , Kropfli R. A. , and Bartram B. W. , 1996: Estimation of ice hydrometeor types and shapes from radar polarization measurements. J. Atmos. Oceanic Technol., 13 , 8596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mead, J., and Widener K. , 2005: W-band ARM cloud radar system. Proc. 2005 ARM Science Meeting, Daytona Beach, FL, U.S. Dept. of Energy.

  • Moran, K. P., Martner B. E. , Post M. J. , Kropfli R. A. , Welshand D. C. , and Widener K. B. , 1998: An unattended cloud-profiling radar for use in climate research. Bull. Amer. Meteor. Soc., 79 , 443455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Connor, E. J., Hogan R. J. , and Illingworth A. J. , 2005: Retrieving stratocumulus drizzle parameters using Doppler radar and lidar. J. Appl. Meteor., 44 , 1427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, T., Doji H. , Iwai H. , Kimura I. , Fukao S. , Yamamoto M. , Tsuda T. , and Kato S. , 1990: Computer processing for deriving drop-size distributions and vertical air velocities from VHF Doppler radar spectra. Radio Sci., 25 , 961973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, G., Ruster R. , and Czechowsky P. , 1979: Complementary code and digital filtering for detection of weak VHF radar signals from the mesosphere. IEEE Trans Geosci. Electron., 17 , 154161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., Kollias P. , Matrosov S. Y. , and Schneider T. L. , 2004: Deriving mixed-phase cloud properties from Doppler radar spectra. J. Atmos. Oceanic Technol., 21 , 660670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sirmans, D., and Bumgarner B. , 1975: Numerical comparison of five mean frequency estimators. J. Appl. Meteor., 14 , 9911003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stokes, G. M., and Schwartz S. E. , 1994: The Atmospheric Radiation Measurement (ARM) Program: Programmatic background and design of the Cloud and Radiation Test Bed. Bull. Amer. Meteor. Soc., 75 , 12011221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uttal, T., Church L. I. , Martner B. E. , and Gibson J. S. , 1993: CLDSTATS: A cloud boundary detection algorithm for vertically pointing radar data. NOAA Tech. Memo. ERL WPL-233, 28 pp. [Available from the National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22161.].

  • Wakasugi, K., and Fukao S. , 1985: Sidelobe properties of a complementary code used in MST radar observations. IEEE Trans. Geosci. Remote Sens., GE-23 , 5759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Widener, K. B., Moran K. P. , Clark K. A. , Chanders C. , Miller M. A. , Johnson M. A. K. L. , and Koontz A. S. , 2004: MMCR upgrades: Present status and future plans. Proc. 2004 ARM Science Meeting, Albuquerque, NM, U.S. Dept. of Energy.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 533 199 16
PDF Downloads 1387 106 12