Comparison between Backscatter Lidar and Radiosonde Measurements of the Diurnal and Nocturnal Stratification in the Lower Troposphere

Giovanni Martucci Observatory of Neuchâtel, Neuchâtel, Switzerland

Search for other papers by Giovanni Martucci in
Current site
Google Scholar
PubMed
Close
,
Renaud Matthey Observatory of Neuchâtel, Neuchâtel, Switzerland

Search for other papers by Renaud Matthey in
Current site
Google Scholar
PubMed
Close
,
Valentin Mitev Observatory of Neuchâtel, Neuchâtel, Switzerland

Search for other papers by Valentin Mitev in
Current site
Google Scholar
PubMed
Close
, and
Hans Richner Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland

Search for other papers by Hans Richner in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A collection of boundary layer heights has been derived from measurements performed by a ground-based backscatter lidar in Neuchâtel, Switzerland (47.000°N, 6.967°E, 485 m ASL). A dataset of 98 cases have been collected during 2 yr. From these data, 61 are noon and 37 are midnight cases. The following two different schemes were used to retrieve the mixed layer depth and the height of the residual layer from the measurements: the gradient and variance methods. The obtained values were compared with those derived from the potential temperature profiles as computed from radiosonde data. For nocturnal cases, the height of the first aerosol layer above the residual layer was also compared to the corresponding potential temperature value. Correlation coefficients between lidar and radiosonde in both convective and stable conditions are between 0.88 and 0.97.

Corresponding author address: Valentin Mitev, Observatory of Neuchâtel, Rue de l’Observatoire 58, Neuchâtel CH-2000, Switzerland. Email: valentin.mitev@ne.ch

Abstract

A collection of boundary layer heights has been derived from measurements performed by a ground-based backscatter lidar in Neuchâtel, Switzerland (47.000°N, 6.967°E, 485 m ASL). A dataset of 98 cases have been collected during 2 yr. From these data, 61 are noon and 37 are midnight cases. The following two different schemes were used to retrieve the mixed layer depth and the height of the residual layer from the measurements: the gradient and variance methods. The obtained values were compared with those derived from the potential temperature profiles as computed from radiosonde data. For nocturnal cases, the height of the first aerosol layer above the residual layer was also compared to the corresponding potential temperature value. Correlation coefficients between lidar and radiosonde in both convective and stable conditions are between 0.88 and 0.97.

Corresponding author address: Valentin Mitev, Observatory of Neuchâtel, Rue de l’Observatoire 58, Neuchâtel CH-2000, Switzerland. Email: valentin.mitev@ne.ch

Save
  • Blumen, W., 1990: Atmospheric Processes over Complex Terrain. Meteor. Monogr., No. 45, Amer. Meteor. Soc., 323 pp.

  • Bösenberg, J., and Linné H. , 2002: Laser remote sensing of the planetary boundary layer. Meteor. Z., 11 , 233240.

  • Bösenberg, J., and Matthias V. , 2003: EARLINET: European Aerosol Research Lidar Network to establish an aerosol climatology. MPI Tech. Rep. 348, 191 pp.

  • Bösenberg, J., and Coauthors, 2002: EARLINET: Establishing the European Aerosol Research Lidar Network. Lidar Remote Sensing in Atmospheric and Earth Sciences. Proc. 21st Int. Laser Radar Conf., Quebec City, QC, Canada, Defense R&D Canada, Valcartier, 293–296.

  • Brooks, I. M., 2003: Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles. J. Atmos. Oceanic Technol., 20 , 10921105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cramer, O. P., 1972: Potential temperature analysis for mountainous terrain. J. Appl. Meteor., 11 , 4450.

  • Cohn, S. A., and Angevine W. M. , 2000: Boundary layer height and entrainment zone thickness measured by lidars and wind- profiling radars. J. Appl. Meteor., 39 , 12331247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, K. J., Gamage N. , Hagelberg C. R. , Kiemle C. , Lenschow D. H. , and Sullivan P. P. , 2000: An objective method for deriving atmospheric structure from airborne lidar observations. J. Atmos. Oceanic Technol., 17 , 14551468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Wekker, S. F. J., Kossmann M. , and Fielder F. , 1997: Observations of daytime mixed layer heights over mountainous terrain during the TRACT field campaign. Proc. 12th Symp. on Boundary Layers and Turbulence, Vancouver, BC, Canada, Amer. Meteor. Soc., 498–499.

  • De Wekker, S. F. J., Steyn D. G. , and Nyeki S. , 2004: A comparison of aerosol-layer and convective boundary-layer structure over a mountain range during STAAARTE ’97. Bound.-Layer Meteor., 113 , 249271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flamant, C., Pelon J. , Flamant P. H. , and Durand P. , 1997: Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary layer. Bound.-Layer Meteor., 83 , 247284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frioud, M., Mitev V. , Matthey R. , Häberli C. , Richner H. , Werner R. , and Vogt S. , 2003: Elevated aerosol stratification above Rhine Valley under strong anticyclonic conditions. Atmos. Environ., 37 , 17851797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frioud, M., Mitev V. , Matthey R. , Richner H. , Furger M. , and Gubser S. , 2004: Variation of the aerosol stratification over the Rhine Valley during Foehn development: A backscatter lidar study. Meteor. Z., NF13 , 175181.

    • Search Google Scholar
    • Export Citation
  • Hägeli, P., 1998: Evaluation of a new technique for extracting mixed layer depth and entrainment zone thickness from lidar backscatter profiles. M.S., Dept. of Geography, Swiss Federal Institute of Technology ETHZ, 67 pp.

  • Hägeli, P., Steyn D. G. , and Strawbridge K. B. , 2000: Spatial and temporal variability of mixed-layer depth and entrainment zone thickness. Bound.-Layer Meteor., 97 , 4771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayden, K. L., Anlauf K. G. , Hoff R. M. , Strapp J. W. , Bottenheim J. W. , Wiebe H. A. , Froude F. A. , and Martin J. B. , 1997: The vertical chemical and meteorological structure of the boundary layer in the lower Fraser Valley during Pacific ’93. Atmos. Environ., 31 , 20892105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heffter, J. L., 1980: Air Resource Laboratories atmospheric transport and dispersion model. NOAA Tech. Memo. ERL ARL-81, 24 pp.

  • Hoff, R. M., Harwood M. , Sheppard A. , Froude F. , and Martin J. B. , 1997: Use of airborne lidar to determine aerosol sources and movement in the Lower Fraser Valley (LFV), BC. Atmos. Environ., 31 , 21232134.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hooper, W. P., and Eloranta E. W. , 1986: Lidar measurements of wind in the planetary boundary layer: The method, accuracy and results from joint measurements with radiosonde and kytoon. J. Climate Appl. Meteor., 25 , 9901001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthias, V., and Coauthors, 2004: Vertical aerosol distribution over Europe: Statistical analysis of Raman lidar data from 10 European Aerosol Research Lidar Network (EARLINET) stations. J. Geophys. Res., 109 .D18201, doi: 10.1029/2004JD004638.

    • Search Google Scholar
    • Export Citation
  • McIlveen, R., 1992: Fundamentals of Weather and Climate. Chapman & Hall, 497 pp.

  • Melfi, S. H., Spinhire J. D. , Chou S-H. , and Palm S. P. , 1985: Lidar observation of vertically organized convection in the planetary boundary layer over the ocean. J. Climate Appl. Meteor., 24 , 806821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menut, L., Flamant C. , Pelon J. , and Flamant P. H. , 1999: Urban boundary layer height determination from lidar measurements over the Paris area. Appl. Opt., 38 , 945954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piironen, A. K., and Eloranta E. , 1995: Convective boundary layer mean depths and cloud geometrical properties obtained from volume imaging lidar data. J. Geophys. Res., 100 , 2556925576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rampanelli, G., and Zardi D. , 2004: A method to determine the capping inversion of the convective boundary layer. J. Appl. Meteor., 43 , 925933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruffieux, D., and Joss J. , 2003: Influence of radiation on the temperature sensor mounted on the Swiss radiosonde. J. Atmos. Oceanic Technol., 20 , 15761582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, P. B., Uthe E. E. , Ludwig F. L. , and Shaw N. A. , 1974: A comparison of atmospheric structure as observed with monostatic acoustic sounder and lidar techniques. J. Geophys. Res., 79 , 55555566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salby, M. L., 1996: Fundamentals of Atmospheric Physics. Academic Press, 627 pp.

  • Sicard, M., Pérez C. , Rocadenbosch F. , Baldasano J. M. , and García-Vizcaino D. , 2006: Mixed layer depth determination in the Barcelona costal area from regular lidar measurements: Methods, results and limitation. Bound.-Layer Meteor., 119 , 135157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebert, P., Beyrich F. , Gryning S. E. , Joffre S. , Rasmussen A. , and Tercier Ph , 2001: Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ., 34 , 10011027.

    • Search Google Scholar
    • Export Citation
  • Steyn, D. G., Baldi M. , and Hoff R. M. , 1998: A new technique to derive mixed layer depth and entrainment zone thickness from lidar profiles. Extended Abstracts, 19th Int. Laser Radar Conf. (ILRC), NASA/CP-1988-207671/PT1, Annapolis, MD, NASA GFSC Raman Lidar Group, 461–464.

  • Steyn, D. G., Baldi M. , and Hoff R. M. , 1999: The detection of mixed layer depth and entrainment zone thickness from lidar backscatter profiles. J. Atmos. Oceanic Technol., 16 , 953959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Van Pul, W. A. J., Holtslag A. A. M. , and Swart D. P. J. , 1994: A comparison of ABL heights inferred routinely from lidar and radiosondes at noontime. Bound.-Layer Meteor., 68 , 173191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and Hobbs P. V. , 1977: Atmospheric Science—An Introductory Survey. Academic Press, 467 pp.

  • Wandinger, U., 2005: Introduction to lidar. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, Ed., Springer Series of Optical Sciences, Vol. 102, Springer, 1–18.

    • Crossref
    • Export Citation
  • Wiegner, M., and Coauthors, 2006: Mixing layer height over Munich, Germany: Variability and comparisons of different methodologies. J. Geophys. Res., 111 .D13201, doi: 10.1029/2005JD006593.

    • Search Google Scholar
    • Export Citation
  • Zampieri, M., Malguzzi P. , and Buzzi A. , 2005: Sensitivity of quantitative precipitation forecast to boundary layer parameterization: A flash flood case study in the Western Mediterranean. Nat. Hazards Earth Syst. Sci., 5 , 603612.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 676 220 93
PDF Downloads 331 68 1