• Amitai, E., 2000: Systematic variation of observed radar reflectivity–rainfall rate relations in the Tropics. J. Appl. Meteor., 39 , 21982208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anagnostou, E. N., , Anagnostou M. N. , , Krajewski W. F. , , Kruger A. , , and Miriovsky B. J. , 2004: High-resolution rainfall estimation from X-band polarimetric radar measurements. J. Hydrometeor., 5 , 110128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartels, R. H., , Beatty J. C. , , and Barsky B. A. , 1987: An Introduction to Splines for Use in Computer Graphics and Geometric Modeling. Morgan Kaufmann, 476 pp.

    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., 2003: Local random errors in tipping-bucket rain gauge measurements. J. Atmos. Oceanic Technol., 20 , 752759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., , and Krajewski W. F. , 1999: On estimation of radar rainfall error variance. Adv. Water Res., 22 , 585595.

  • Ciach, G. J., , and Krajewski W. F. , 2006: Analysis and modeling of spatial correlation structure in small-scale rainfall in central Oklahoma. Adv. Water Res., 29 , 14501463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cosgrove, C. M., , and Garstang M. , 1995: Simulation of rain events from rain-gauge measurements. Int. J. Climatol., 15 , 10211029.

  • Datta, S., , Jones W. L. , , Roy B. , , and Tokay A. , 2003: Spatial variability of surface rainfall as observed from TRMM field campaign data. J. Appl. Meteor., 42 , 598610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, B. L., 2004: Climatological validation of TRMM TMI and PR monthly rain products over Oklahoma. J. Appl. Meteor., 43 , 519535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, B. L., 2007: Statistical error decomposition of regional-scale climatological precipitation estimates from the Tropical Rainfall Measuring Mission (TRMM). J. Appl. Meteor. Climatol., 46 , 791813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya, , and Legates D. R. , 1994: The accuracy of United States precipitation data. Bull. Amer. Meteor. Soc., 75 , 215227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Habib, E., , and Krajewski W. F. , 2002: Uncertainty analysis of the TRMM ground-validation radar-rainfall products: Application to the TEFLUN-B field campaign. J. Appl. Meteor., 41 , 558572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Habib, E., , Krajewski W. F. , , and Kruger A. , 2001: Sampling errors of tipping-bucket rain gauge measurements. J. Hydrol. Eng., 6 , 159166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagen, M., , and Yuter S. , 2003: Relations between radar reflectivity, liquid water content, and rainfall rate during the MAP SOP. Quart. J. Roy. Meteor. Soc., 129 , 477493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Humphrey, M. D., , Istok J. D. , , Lee J. Y. , , Hevesi J. A. , , and Flint A. L. , 1997: A new method for automated dynamic calibration of tipping-bucket rain gauges. J. Atmos. Oceanic Technol., 14 , 15131519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joss, J., , and Waldvogel A. , 1967: Ein spectrograph für Niederschlasgstropfen mit automatischer Auswertung (A spectrograph for the automatic analysis of raindrops). Pure Appl. Geophys., 68 , 240246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., , Kruger A. , , and Nespor V. , 1998: Experimental and numerical studies of small-scale rainfall measurements and variability. Water Sci. Technol., 37 , 131138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., , Ciach G. J. , , and Habib E. , 2003: An analysis of small-scale rainfall variability in different climatological regimes. Hydrol. Sci. J., 48 , 151162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., , Barnes W. , , Kozu T. , , Shiue J. , , and Simpson J. , 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15 , 809817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., , and List R. , 1993: The effect of curve fits for the disdrometer calibration on raindrop spectra, rainfall rate, and radar reflectivity. J. Appl. Meteor., 32 , 774782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nespor, V., , and Sevruk B. , 1999: Estimation of wind-induced error of rainfall gauge measurements using a numerical simulation. J. Atmos. Oceanic Technol., 16 , 450464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Press, W. H., , Teukolsky S. A. , , Vetterling W. T. , , and Flannery B. P. , 1992: Numerical Recipes in C: The Art of Scientific Computing. 2nd ed. Cambridge University Press, 994 pp.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., , Wolff D. B. , , and Amitai E. , 1994: The window probability matching method for rainfall measurements with radar. J. Appl. Meteor., 33 , 682693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadler, E. J., , and Busscher W. J. , 1989: High-intensity rainfall rate determination from tipping-bucket rain gauge data. Agron. J., 81 , 930934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheppard, B. E., , and Joe P. I. , 1994: Comparison of raindrop size distribution measurements by a Joss-Waldvogel disdrometer, a PMS 2DG spectrometer, and a POSS Doppler radar. J. Atmos. Oceanic Technol., 11 , 874887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., , Kummerow C. , , Tao W-K. , , and Adler R. F. , 1996: On the Tropical Rainfall Measuring Mission (TRMM). Meteor. Atmos. Phys., 60 , 1936.

  • Steiner, M., , Smith J. A. , , Burges S. J. , , Alonso C. V. , , and Darden R. W. , 1999: Effect of bias adjustment and rain gauge data quality control on radar rainfall estimation. Water Resour. Res., 35 , 24872503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., and Coauthors, 2003a: An overview of the Keys Area Precipitation Project (KAPP). Proc. IEEE, 2 , 11481150.

  • Tokay, A., , Wolff D. B. , , Wolff K. R. , , and Bashor P. , 2003b: Rain gauge and disdrometer measurements during the Keys Area Microphysics Project (KAMP). J. Atmos. Oceanic Technol., 20 , 14601477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., , Bashor P. G. , , and Wolff K. R. , 2005: Error characteristics of rainfall measurements by collocated Joss–Waldvogel disdrometers. J. Atmos. Oceanic Technol., 22 , 513527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, R. G., , and Erdman M. D. , 1988: A low-cost computer interfaced rain gauge. Comput. Electron. Agric., 2 , 6773.

  • Wolff, D. B., , Marks D. A. , , Amitai E. , , Silberstein D. S. , , Fisher B. L. , , Tokay A. , , Wang J. , , and Pippitt J. L. , 2005: Ground validation for the Tropical Rainfall Measuring Mission (TRMM). J. Atmos. Oceanic Technol., 22 , 365380.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 311 311 67
PDF Downloads 322 322 59

Estimating Rain Rates from Tipping-Bucket Rain Gauge Measurements

View More View Less
  • 1 Laboratory for Atmospheres, and Science Systems and Applications, Inc., NASA Goddard Space Flight Center, Greenbelt, Maryland
© Get Permissions
Restricted access

Abstract

This paper describes the cubic spline–based operational system for the generation of the Tropical Rainfall Measuring Mission (TRMM) 1-min rain-rate product 2A-56 from tipping-bucket (TB) gauge measurements. A simulated TB gauge from a Joss–Waldvogel disdrometer is employed to evaluate the errors of the TB rain-rate estimation. These errors are very sensitive to the time scale of rain rates. One-minute rain rates suffer substantial errors, especially at low rain rates. When 1-min rain rates are averaged over 4–7-min intervals or longer, the errors dramatically reduce. Estimated lower rain rates are sensitive to the event definition whereas the higher rates are not. The median relative absolute errors are about 22% and 32% for 1-min rain rates higher and lower than 3 mm h−1, respectively. These errors decrease to 5% and 14% when rain rates are used at the 7-min scale. The radar reflectivity–rain-rate distributions drawn from the large amount of 7-min rain rates and radar reflectivity data are mostly insensitive to the event definition. The time shift due to inaccurate clocks can also cause rain-rate estimation errors, which increase with the shifted time length. Finally, some recommendations are proposed for possible improvements of rainfall measurements and rain-rate estimations.

Corresponding author address: Jianxin Wang, NASA Goddard Space Flight Center, Code 613.1, Greenbelt, MD 20771. Email: wang@radar.gsfc.nasa.gov

Abstract

This paper describes the cubic spline–based operational system for the generation of the Tropical Rainfall Measuring Mission (TRMM) 1-min rain-rate product 2A-56 from tipping-bucket (TB) gauge measurements. A simulated TB gauge from a Joss–Waldvogel disdrometer is employed to evaluate the errors of the TB rain-rate estimation. These errors are very sensitive to the time scale of rain rates. One-minute rain rates suffer substantial errors, especially at low rain rates. When 1-min rain rates are averaged over 4–7-min intervals or longer, the errors dramatically reduce. Estimated lower rain rates are sensitive to the event definition whereas the higher rates are not. The median relative absolute errors are about 22% and 32% for 1-min rain rates higher and lower than 3 mm h−1, respectively. These errors decrease to 5% and 14% when rain rates are used at the 7-min scale. The radar reflectivity–rain-rate distributions drawn from the large amount of 7-min rain rates and radar reflectivity data are mostly insensitive to the event definition. The time shift due to inaccurate clocks can also cause rain-rate estimation errors, which increase with the shifted time length. Finally, some recommendations are proposed for possible improvements of rainfall measurements and rain-rate estimations.

Corresponding author address: Jianxin Wang, NASA Goddard Space Flight Center, Code 613.1, Greenbelt, MD 20771. Email: wang@radar.gsfc.nasa.gov

Save