• Auad, G., , Miller A. , , Roads J. , , and Cayan D. , 2001: Pacific Ocean wind stress and surface heat flux anomalies from NCEP reanalysis and observations: Cross-statistics and ocean model responses. J. Geophys. Res., 106 , 2224922265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behringer, D. W., , Ji M. , , and Leetmaa A. , 1998: An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system. Mon. Wea. Rev., 126 , 10131021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennett, A. F., , Chua B. S. , , Harrison D. E. , , and McPhaden M. J. , 2000: Generalized inversion of Tropical Atmosphere–Ocean (TAO) data using a coupled model of the tropical Pacific. J. Climate, 13 , 27702785.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1966: A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus, 18 , 820829.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., , and Raynaud S. , 1997: Kinematics of the Pacific equatorial undercurrent: An Eulerian and Lagrangian approach from GCM results. J. Phys. Oceanogr., 27 , 10381053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonekamp, H., , van Oldenborgh G. J. , , and Burgers G. , 2001: Variational assimilation of TAO and XBT data in the HOPE OGCM, adjusting the surface fluxes in the tropical ocean. J. Geophys. Res., 106 , 1669316709.

    • Search Google Scholar
    • Export Citation
  • Bonjean, F., , and Lagerloef G. S. E. , 2002: Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J. Phys. Oceanogr., 32 , 29382954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and Coauthors, 2001: Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14 , 14791498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Courtier, P., , Thepaut J-N. , , and Hollingsworth A. , 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120 , 13671388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durand, F., , and Delcroix T. , 2000: On the variability of the tropical Pacific thermal structure during the 1979–96 period, as deduced from XBT sections. J. Phys. Oceanogr., 30 , 32613269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, L., , Christensen E. , , and Yamarone C. , 1994: TOPEX/POSEIDON mission overview. J. Geophys. Res., 99 , 2436924381.

  • Gent, P. R., , and Cane M. A. , 1989: A reduced gravity, primitive equation model of the upper equatorial ocean. J. Comput. Phys., 81 , 444480.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giese, B. S., , and Carton J. A. , 1999: Interannual and decadal variability in the tropical and midlatitude Pacific Ocean. J. Climate, 12 , 34023418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gould, J., and Coauthors, 2004: Argo profiling floats bring new era of in situ ocean observations. Eos, Trans. Amer. Geophys. Union, 85 , 185190.

  • Grima, N., , Bentamy A. , , Katsaros K. , , and Quilfen Y. , 1999: Sensitivity of an ocean circulation model forced with satellite wind stress fields. J. Geophys. Res., 104 , 79677989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halpern, D., , Chao Y. , , Ma C-C. , , and Mechoso C. , 1995: Comparison of tropical Pacific temperature and current simulations with two vertical mixing schemes embedded in an ocean general circulation model and reference to observations. J. Geophys. Res., 100 , 25152522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoteit, I., , Cornuelle B. , , Köhl A. , , and Stammer D. , 2005: Treating strong adjoint sensitivities in tropical eddy-permitting variational data assimilation. Quart. J. Roy. Meteor. Soc., 131 , 36593682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, G., , Sloyan B. , , Kessler W. , , and McTaggart K. , 2002: Direct measurements of upper ocean currents and water properties across the tropical Pacific Ocean during the 1990’s. Prog. Oceanogr., 52 , 3161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Josey, S., , Kent E. , , and Taylor P. , 2002: Wind stress forcing of the ocean in the SOC climatology: Comparisons with the NCEP–NCAR, ECMWF, UWM/COADS, and Hellerman and Rosenstein datasets. J. Phys. Oceanogr., 32 , 19932019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77 , 437471.

  • Kessler, W. S., 2002: Mean three-dimensional circulation in the northeast tropical Pacific. J. Phys. Oceanogr., 32 , 24572471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., , Johnson G. C. , , and Moore D. W. , 2003: Sverdrup and nonlinear dynamics of the Pacific equatorial currents. J. Phys. Oceanogr., 33 , 9941008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Köhl, A., , Stammer D. , , and Cornuelle B. , 2007: Interannual to decadal changes in the ECCO global synthesis. J. Phys. Oceanogr., 37 , 313337.

  • Lagerloef, G., , Mitchum G. , , Lukas R. , , and Niiler P. , 1999: Tropical Pacific near-surface currents estimated from altimeter, wind, and drifter data. J. Geophys. Res., 104 , 2331323326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W., , McWilliams J. , , and Doney S. , 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., , and Boyer T. P. , 1994: Temperature. Vol. 4. World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • Levitus, S., , Burgett R. , , and Boyer T. P. , 1994: Salinity. Vol. 3, World Ocean Atlas 1994, NOAA Atlas NESDIS 3, 99 pp.

  • Marshall, J., , Adcroft A. , , Hill C. , , Perelman L. , , and Heisey C. , 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102 , 57535766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., , Lu P. , , and Yu Z-J. , 2002: Dynamics of the Pacific subsurface countercurrents. J. Phys. Oceanogr., 32 , 23792404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 1998: The Tropical Ocean-Global Atmosphere (TOGA) observing system: A decade of progress. J. Geophys. Res., 103 , 1416914260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Megann, A., , and New A. , 2001: The effects of resolution and viscosity in an isopycnic-coordinate model of the equatorial Pacific. J. Phys. Oceanogr., 31 , 19932018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1996: Ocean Circulation Theory. Springer-Verlag, 453 pp.

  • Putman, W., , Legler D. , , and O’Brien J. , 2000: Interannual variability of synthesized FSU and NCEP–NCAR reanalysis pseudo-stress products over the Pacific Ocean. J. Climate, 13 , 30033016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiao, L., , and Weisberg R. H. , 1997: The zonal momentum balance of the equatorial undercurrent in the central Pacific. J. Phys. Oceanogr., 27 , 10941119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., , and Chen S. , 2004: Seasonal modulations in the eddy field of the South Pacific Ocean. J. Phys. Oceanogr., 34 , 15151527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , and Smith T. M. , 1994: Improved global sea surface temperature analysis using optimum interpolation. J. Climate, 7 , 929948.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W., , and Sandwell D. , 1997: Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277 , 19561962.

  • Stammer, D., , Wunsch C. , , Fukumori I. , , and Marshall J. , 2002a: State estimation improves prospects for ocean research. Eos, Trans. Amer. Geophys. Union, 83 , 289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., and Coauthors, 2002b: The global ocean circulation during 1992–1997, estimated from ocean observations and a general circulation model. J. Geophys. Res., 107 .3118, doi:10.1029/2001JC000888.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., , Ueyoshi K. , , Köhl A. , , Large W. G. , , Josey S. A. , , and Wunsch C. , 2004: Estimating air-sea fluxes of heat, freshwater, and momentum through global ocean data assimilation. J. Geophys. Res., 109 .C05023, doi:10.1029/2003JC002082.

    • Search Google Scholar
    • Export Citation
  • Stockdale, T. D., , Anderson D. , , Davey M. , , Delecleuse P. , , Kattenberg A. , , Kitamura Y. , , Latif M. , , and Yamagata T. , 1993: Intercomparison of tropical ocean GCMs. World Climate Research Programme, WCRP-79, WMO/TD-No. 545, 90 pp.

  • Sun, D-Z., , Fasullo J. , , Zhang T. , , and Roubicek A. , 2003: On the radiative and dynamical feedbacks over the equatorial Pacific cold tongue. J. Climate, 16 , 24252432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swenson, M. S., , and Hansen D. V. , 1999: Tropical Pacific Ocean mixed layer heat budget: The Pacific cold tongue. J. Phys. Oceanogr., 29 , 6981.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vialard, J., , Menkes C. , , Boulanger J-P. , , Delecluse P. , , and Guilyardi E. , 2001: A model study of oceanic mechanisms affecting equatorial Pacific sea surface temperature during the 1997–98 El Niño. J. Phys. Oceanogr., 31 , 16491675.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, A. T., , Vialard J. , , and Anderson D. L. T. , 2003: Three- and four-dimensional variational assimilation with a general circulation model of the tropical Pacific Ocean. Part I: Formulation, internal diagnostics, and consistency checks. Mon. Wea. Rev., 131 , 13601378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, S-K., , Hou Y-T. , , Miller A. J. , , and Campana K. A. , 1999: Evaluation of the earth radiation budget in NCEP–NCAR reanalysis with ERBE. J. Climate, 12 , 477492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Y., , Emery W. , , and Leben R. , 1995: Satellite altimeter derived geostrophic currents in the western tropical Pacific during 1992–1993 and their validation with drifting buoy trajectories. J. Geophys. Res., 100 , 2506925085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, K., , and Marotzke J. , 1999: The importance of open boundary estimation for an Indian Ocean GCM data synthesis. J. Mar. Res., 57 , 305334.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 19 19 2
PDF Downloads 14 14 2

Impact of Resolution and Optimized ECCO Forcing on Simulations of the Tropical Pacific

View More View Less
  • 1 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • | 2 Laboratoire de Physique des Océans, IFREMER, Brest, France
  • | 3 Institut für Meereskunde, Hamburg, Germany
© Get Permissions
Restricted access

Abstract

The sensitivity of the dynamics of a tropical Pacific Massachusetts Institute of Technology (MIT) general circulation model (MITgcm) to the surface forcing fields and to the horizontal resolution is analyzed. During runs covering the period 1992–2002, two different sets of surface forcing boundary conditions are used, obtained 1) from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis project and 2) from the Estimating the Circulation and Climate of the Ocean (ECCO) assimilation consortium. The “ECCO forcing” is the “NCEP forcing” adjusted by a state estimation procedure using the MITgcm with a 1° × 1° global grid and the adjoint method assimilating a multivariate global ocean dataset. The skill of the model is evaluated against ocean observations available in situ and from satellites. The model domain is limited to the tropical Pacific, with open boundaries located along 26°S, 26°N, and in the Indonesian throughflow. To account for large-scale changes of the ocean circulation, the model is nested in the global time-varying ocean state provided by the ECCO consortium on a 1° grid. Increasing the spatial resolution to 1/3° and using the ECCO forcing fields significantly improves many aspects of the circulation but produces overly strong currents in the western model domain. Increasing the resolution to 1/6° does not yield further improvements of model results. Using the ECCO heat and freshwater fluxes in place of NCEP products leads to improved time-mean model skill (i.e., reduced biases) over most of the model domain, underlining the important role of adjusted heat and freshwater fluxes for improving model representations of the tropical Pacific. Combinations of ECCO and NCEP wind forcing fields can improve certain aspects of the model solutions, but neither ECCO nor NCEP winds show clear overall superiority.

Corresponding author address: I. Hoteit, Scripps Institution of Oceanography, 9500 Gilman Dr., MC 0230, La Jolla, CA 92093. Email: ihoteit@ucsd.edu

Abstract

The sensitivity of the dynamics of a tropical Pacific Massachusetts Institute of Technology (MIT) general circulation model (MITgcm) to the surface forcing fields and to the horizontal resolution is analyzed. During runs covering the period 1992–2002, two different sets of surface forcing boundary conditions are used, obtained 1) from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis project and 2) from the Estimating the Circulation and Climate of the Ocean (ECCO) assimilation consortium. The “ECCO forcing” is the “NCEP forcing” adjusted by a state estimation procedure using the MITgcm with a 1° × 1° global grid and the adjoint method assimilating a multivariate global ocean dataset. The skill of the model is evaluated against ocean observations available in situ and from satellites. The model domain is limited to the tropical Pacific, with open boundaries located along 26°S, 26°N, and in the Indonesian throughflow. To account for large-scale changes of the ocean circulation, the model is nested in the global time-varying ocean state provided by the ECCO consortium on a 1° grid. Increasing the spatial resolution to 1/3° and using the ECCO forcing fields significantly improves many aspects of the circulation but produces overly strong currents in the western model domain. Increasing the resolution to 1/6° does not yield further improvements of model results. Using the ECCO heat and freshwater fluxes in place of NCEP products leads to improved time-mean model skill (i.e., reduced biases) over most of the model domain, underlining the important role of adjusted heat and freshwater fluxes for improving model representations of the tropical Pacific. Combinations of ECCO and NCEP wind forcing fields can improve certain aspects of the model solutions, but neither ECCO nor NCEP winds show clear overall superiority.

Corresponding author address: I. Hoteit, Scripps Institution of Oceanography, 9500 Gilman Dr., MC 0230, La Jolla, CA 92093. Email: ihoteit@ucsd.edu

Save