• Battaglia, A., and Simmer C. , 2008: How does multiple scattering affect the spaceborne W-band radar measurements at ranges close to and crossing the surface-range? IEEE Trans. Geosci. Remote Sens., 46 , 16441651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battaglia, A., Ajewole M. O. , and Simmer C. , 2005: Multiple scattering effects due to hydrometeors on precipitation radar systems. Geophys. Res. Lett., 32 .L19801, doi:10.1029/2005GL023810.

    • Search Google Scholar
    • Export Citation
  • Battaglia, A., Ajewole M. O. , and Simmer C. , 2006a: Evaluation of radar multiple-scattering effects from a GPM perspective. Part I: Model description and validation. J. Appl. Meteor. Climatol., 45 , 16341647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battaglia, A., Ajewole M. O. , and Simmer C. , 2006b: Evaluation of radar multiple-scattering effects from a GPM perspective. Part II: Model results. J. Appl. Meteor. Climatol., 45 , 16481664.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battaglia, A., Ajewole M. O. , and Simmer C. , 2007: Evaluation of radar multiple scattering effects in CloudSat configuration. Atmos. Chem. Phys. Discuss., 7 , 17191730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, C., and Munk W. , 1954: Measurements of the roughness of the sea surface from photographs of the sun’s glitter. J. Opt. Soc. Amer., 144 , 838850.

    • Search Google Scholar
    • Export Citation
  • Durden, S. L., Haddad Z. S. , and Li L. , 2003: Comparison of TRMM Precipitation Radar and airborne radar data. J. Appl. Meteor., 42 , 769774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellingson, R. G., Ellis J. , and Fels S. , 1991: The intercomparison of radiation codes used in climate models: Long wave results. J. Geophys. Res., 96 , D5. 89298953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freilich, M. H., and Vanhoff B. A. , 2003: The relationship between winds, surface roughness, and the radar backscatter at low incidence angles from TRMM precipitation measurements. J. Atmos. Oceanic Technol., 20 , 549562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., and Illingworth A. J. , 1999: The potential of spaceborne dual-wavelength radar to make measurements of cirrus clouds. J. Atmos. Oceanic Technol., 16 , 518531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., and Betts A. K. , 1981: Convection in GATE. Rev. Geophys. Space Phys., 19 , 541576.

  • Kobayashi, S., Tanelli S. , and Im E. , 2005: Second-order multiple scattering theory associated with backscattering enhancement for a millimeter wavelength weather radar with a finite beam width. Radio Sci., 40 .RS6015, doi:10.1029/2004RS003219.

    • Search Google Scholar
    • Export Citation
  • Li, L., and Coauthors, 2001: Retrieval of atmospheric attenuation using combined ground-based and airborne 95-GHz cloud radar measurements. J. Atmos. Oceanic Technol., 18 , 13451353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., Heymsfield G. M. , Tian L. , and Racette P. E. , 2005: Measurements of ocean surface backscattering using an airborne 95-GHz cloud radar—Implication for calibration of airborne and spaceborne W-band radars. J. Atmos. Oceanic Technol., 22 , 10331045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebe, H. J., Hufford G. A. , and Cotton M. G. , 1993: Propagation modeling of moist air and suspended water/ice particles below 1000 GHz. Preprints, Electromagnetic Wave Propagation Panel Symp., Palma de Mallorca, Spain, AGARD Conf. Proc. 542.

  • Liu, C. L., and Illingworth A. J. , 2000: Toward more accurate retrievals of ice water content from radar measurements of clouds. J. Appl. Meteor., 39 , 11301146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marzano, F. S., Roberti L. , Di Michele S. , Mugnai A. , and Tassa A. , 2003: Modeling of apparent radar reflectivity due to convective clouds at attenuating wavelengths. Radio Sci., 38 .1002, doi:10.1029/2002RS002613.

    • Search Google Scholar
    • Export Citation
  • Okamoto, K., Kubokawa T. , Tamura A. , and Ushio T. , 2002: Long term trend of ocean surface normalized radar cross section observed by TRMM precipitation radar. Proc. Second Global Precipitation Mission (GPM) International Planning Workshop, Shinagawa, Japan, Communications Research Laboratory–National Space Development Agency of Japan–NASDA–NASA.

    • Search Google Scholar
    • Export Citation
  • Protat, A., and Coauthors, 2004: Le Projet RALI: Combinaison d’un radar nuage et d’un lidar pour l’étude des nuages faiblement précipitants. La Météor., 47 , 2333.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train. Bull. Amer. Meteor. Soc., 83 , 17711790.

  • Testud, J., Hildebrand P. H. , and Lee W-C. , 1995: A procedure to correct airborne Doppler radar data for navigation errors using the echo returned from the earth’s surface. J. Atmos. Oceanic Technol., 12 , 800820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsang, L., and Ishimaru A. , 1985: Theory of backscattering enhancement of random discrete isotropic scatterers based on the summation of all ladder and cyclical terms. J. Opt. Soc. Amer., 2 , 13311338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulaby, F. T., Moore R. K. , and Fung A. K. , 1981: Microwave Remote Sensing, Active and Passive. Vol. I. Microwave Remote Sensing, Fundamentals and Radiometry, Artech House, Inc.

    • Search Google Scholar
    • Export Citation
  • Wu, J., 1972: Sea-surface slope and equilibrium wind-wave spectra. Phys. Fluids, 15 , 741747.

  • Wu, J., 1990: Mean square slopes of the wind distributed water surface, their magnitude, directionality and composition. Radio Sci., 25 , 3748.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 244 50 3
PDF Downloads 172 60 2

Comparison of Airborne and Spaceborne 95-GHz Radar Reflectivities and Evaluation of Multiple Scattering Effects in Spaceborne Measurements

Dominique BouniolCentre National de la Recherche Météorologique/GAME, Météo-France/CNRS, Toulouse, France

Search for other papers by Dominique Bouniol in
Current site
Google Scholar
PubMed
Close
,
Alain ProtatCentre d’Étude des Environnements Terrestre et Planétaires, Vélizy, France

Search for other papers by Alain Protat in
Current site
Google Scholar
PubMed
Close
,
Artemio Plana-FattoriCentre d’Étude des Environnements Terrestre et Planétaires, Vélizy, France

Search for other papers by Artemio Plana-Fattori in
Current site
Google Scholar
PubMed
Close
,
Manuel GiraudCentre d’Étude des Environnements Terrestre et Planétaires, Vélizy, France

Search for other papers by Manuel Giraud in
Current site
Google Scholar
PubMed
Close
,
Jean-Paul VinsonCentre d’Étude des Environnements Terrestre et Planétaires, Vélizy, France

Search for other papers by Jean-Paul Vinson in
Current site
Google Scholar
PubMed
Close
, and
Noël GrandDivision Technique, INSU, Meudon, France

Search for other papers by Noël Grand in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper provides an evaluation of the level 1 (reflectivity) CloudSat products by making use of coincident measurements collected by an airborne 95-GHz radar during the African Monsoon Multidisciplinary Analysis (AMMA) experiment that took place in summer 2006 over West Africa. In a first step the airborne radar calibration is assessed. Collocated measurements of the spaceborne and airborne radars within the ice anvil of a mesoscale convective system are then compared. Several aspects are interesting in this comparison: First, both instruments exhibit attenuation within the ice part of the convective system, which suggests either the presence of a significant amount of supercooled liquid water above the melting layer or the presence of wet and very dense ice. Second, from the differences in the observed reflectivity values, a multiple scattering enhancement of at least 2.5 dB in the CloudSat reflectivities at flight altitude is estimated. The main conclusion of this paper is that in such thick anvils of mesoscale convective systems the CloudSat measurements have to be corrected for this effect, if one wants to derive accurate level 2 products such as the ice water content from radar reflectivity. This effect is expected to be much smaller in nonprecipitating clouds though.

Corresponding author address: Dominique Bouniol, CNRM/GMME, Météo-France, 47 Ave. Gaspard Coriolis, 31057 Toulouse CEDEX, France. Email: dominique.bouniol@meteo.fr

Abstract

This paper provides an evaluation of the level 1 (reflectivity) CloudSat products by making use of coincident measurements collected by an airborne 95-GHz radar during the African Monsoon Multidisciplinary Analysis (AMMA) experiment that took place in summer 2006 over West Africa. In a first step the airborne radar calibration is assessed. Collocated measurements of the spaceborne and airborne radars within the ice anvil of a mesoscale convective system are then compared. Several aspects are interesting in this comparison: First, both instruments exhibit attenuation within the ice part of the convective system, which suggests either the presence of a significant amount of supercooled liquid water above the melting layer or the presence of wet and very dense ice. Second, from the differences in the observed reflectivity values, a multiple scattering enhancement of at least 2.5 dB in the CloudSat reflectivities at flight altitude is estimated. The main conclusion of this paper is that in such thick anvils of mesoscale convective systems the CloudSat measurements have to be corrected for this effect, if one wants to derive accurate level 2 products such as the ice water content from radar reflectivity. This effect is expected to be much smaller in nonprecipitating clouds though.

Corresponding author address: Dominique Bouniol, CNRM/GMME, Météo-France, 47 Ave. Gaspard Coriolis, 31057 Toulouse CEDEX, France. Email: dominique.bouniol@meteo.fr

Save