Abstract
The meteorological mini unmanned aerial vehicle (M2AV) was used for measuring the meteorological wind. The wind is the vector difference between the aircraft speed relative to the earth (inertial velocity) and relative to the airflow (true airspeed). The latter was computed from five-hole-probe pressure measurements in combination with calibration–coefficient polynomials obtained during wind tunnel calibration. The aircraft inertial velocity, position, and attitude were calculated using a Kalman filter that combined data from a global positioning system (GPS) and an inertial navigation system (INS). The temporal (and spatial) resolution of the M2AV wind measurement is remarkably fine. An inertial subrange of locally isotropic turbulence can be measured up to 40 Hz (or 0.55 m at 22 m s−1 airspeed).
The first M2AV wind estimation showed some systematic deviations compared to the expected values (like a constant mean wind in every flight direction). Therefore, an in-flight wind calibration technique was developed that corrects for the inaccuracy of the true heading, the constant offset of the pitch angle, and the underestimation of the true airspeed. The final adjusted wind measurements were verified during a field experiment at the measurement field of the German Meteorological Service, southeast of Berlin. The mean horizontal and vertical wind measured by the M2AV agreed well with simultaneous sodar and tower measurements.
Corresponding author address: Aline van den Kroonenberg, Institut fur Luft- und Raumfahrtsysteme, TU Braunschweig, 38108 Braunschweig, Germany. Email: a.kroonenberg@tu-bs.de