• Baklanov, A., and Coauthors, 2007: Integrated systems for forecasting urban meteorology, air pollution and population exposure. Atmos. Chem. Phys., 7 , 855874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bessagnet, B., Hodzic A. , Blanchard O. , Lattuati M. , Le Bihan O. , and Marfaing H. , 2005: Origin of particulate matter pollution episodes in wintertime over the Paris Basin. Atmos. Environ., 39 , 61596174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brücher, W., Kessler C. , Kerschgens M. , and Ebel A. , 2000: Simulation of traffic-induced air pollution on regional to local scales. Atmos. Environ., 34 , 46754681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ching, J., Herwehe J. , and Swall J. , 2006: On joint deterministic grid modeling and sub-grid variability conceptual framework for model evaluation. Atmos. Environ., 40 , 49354945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State/NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121 , 14931513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebel, A., Memmesheimer M. , and Jacobs J. , 2007: Chemical perturbations in the planetary boundary layer and their relevance for chemistry transport modelling. Bound.-Layer Meteor., 125 , 265278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galmarini, S., Vinuesa J-F. , and Martilli A. , 2007: Modeling the impact of sub-grid scale emission variability on upper-air concentration. Atmos. Chem. Phys., 8 , 141158.

    • Search Google Scholar
    • Export Citation
  • Ginoux, P., Chin M. , Tegen I. , Prospero J. M. , Holben B. , Dubovik O. , and Lin S-J. , 2001: Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res., 106 , 2025520273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, S., Chang J. , and Fernau M. , 1998: Monte Carlo estimates of uncertainties in predictions by a photochemical grid model (UAM-IV) due to uncertainties in input variables. Atmos. Environ., 32 , 36193628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, S., Lu Z. , Frey H. , Wheeler N. , Vukovitch J. , Arunachalam S. , Fernau M. , and Hansen D. , 2001: Uncertainties in predicted ozone concentrations due to input uncertainties for the UAM-V photochemical grid model applied to the July 1995 OTAG domain. Atmos. Environ., 35 , 891903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hauglustaine, D. A., Hourdin F. , Jourdain L. , Filiberti M-A. , Walters S. , Lamarque J-F. , and Holland E. A. , 2004: Interactive chemistry in the Laboratoire de Météorologie Dynamique general circulation model: Description and background tropospheric chemistry evaluation. J. Geophys. Res., 109 .D04314, doi:10.1029/2003JD003957.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and Armengaud A. , 1999: The use of finite-volume methods for atmospheric advection of trace species. Part I: Test of various formulations in a general circulation model. Mon. Wea. Rev., 127 , 822837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kousa, A., Kukkonen J. , Karppinen A. , Aarnio P. , and Koskentalo T. , 2002: A model for evaluating the population exposure to ambient air pollution in an urban area. Atmos. Environ., 36 , 21092119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kruize, H., Hänninen O. , Breugelmans O. , Lebret E. , and Jantunen M. , 2003: Description and demonstration of the EXPOLIS simulation model: Two examples of modeling population exposure to particulate matter. J. Exposure Anal. Environ. Epidemiol., 13 , 8799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mass, C., Ovens D. , Westrick K. , and Colle B. , 2002: Does increasing horizontal resolution produce more skillful forecasts? Bull. Amer. Meteor. Soc., 83 , 407430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models. Bound.-Layer Meteor., 94 , 357397.

  • Menut, L., 2003: Adjoint modelling for atmospheric pollution processes sensitivity at regional scale during the ESQUIF IOP2. J. Geophys. Res., 108 .8562, doi:10.1029/2002JD002549.

    • Search Google Scholar
    • Export Citation
  • Mestayer, P. G., and Coauthors, 2005: The urban boundary-layer field campaign in marseille (ubl/cluescompte): Set-up and first results. Bound.-Layer Meteor., 114 , 315365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miao, J-F., Chen D. , and Wyser K. , 2006: Modelling subgrid scale dry deposition velocity of O3 over the Swedish west coast with MM5-PX model. Atmos. Environ., 40 , 415429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michou, M., Laville P. , Serca D. , Fotiadi A. , Bouchou P. , and Peuch V-H. , 2005: Measured and modeled dry deposition velocities over the ESCOMPTE area. Atmos. Res., 74 , 89116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C., and Wyngaard J. , 1989: Evaluation of turbulent transport and dissipation closures in second-order modeling. J. Atmos. Sci., 46 , 23112330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ott, W., 1985: Total human exposure: An emerging science focuses on humans as receptors of environmental pollution. Environ. Sci. Technol., 19 , 880886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotach, M., 1993a: Turbulence close to a rough urban surface. Part I: Reynolds stress. Bound.-Layer Meteor., 65 , 128.

  • Rotach, M., 1993b: Turbulence close to a rough urban surface. Part II: Variances and gradients. Bound.-Layer Meteor., 66 , 7592.

  • Schmidt, H., Derognat C. , Vautard R. , and Beekmann M. , 2001: A comparison of simulated and observed ozone mixing ratios for the summer of 1998 in Western Europe. Atmos. Environ., 35 , 62776297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sillman, S., Vautard R. , Menut L. , and Kley D. , 2003: O3-NOX-VOC sensitivity and NOX-VOC indicators in Paris: Results from models and Atompheric Pollution over the Paris Area (ESQUIF) measurements. J. Geophys. Res., 108 .8563, doi:10.1029/2002JD001561.

    • Search Google Scholar
    • Export Citation
  • Stockwell, W., 1995: Effects of turbulence on gas-phase atmospheric chemistry: Calculation of the relationship between time scales for diffusion and chemical reaction. Meteor. Atmos. Phys., 57 , 159171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tetzlaff, G., Dlugi R. , Fridrich K. , Gross G. , Hinneburg D. , Pahl U. , Zegler M. , and Molders N. , 2002: On modeling dry deposition of long-lived and chemically reactive species over heterogeneous terrain. J. Atmos. Chem., 42 , 123155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117 , 17791800.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Leer, B., 1979: Towards the ultimate conservative difference scheme. V. A second order sequel to Godunov’s method. J. Comput. Phys., 32 , 101136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Loon, R., and Coauthors, 2007: Evaluation of long-term ozone simulations from seven regional air quality models and their ensemble. Atmos. Environ., 41 , 20832097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vardoulakis, S., Fisher B. E. A. , Pericleous K. , and Gonzalez-Flesca N. , 2003: Modelling air quality in street canyons: A review. Atmos. Environ., 37 , 155182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vardoulakis, S., Gonzalez-Flesca N. , Fisher B. , and Pericleous K. , 2005: Spatial variability of air pollution in the vicinity of a permanent monitoring station in central Paris. Atmos. Environ., 39 , 27252736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., Beekmann M. , Roux J. , and Gombert D. , 2001: Validation of a hybrid forecasting system for the ozone concentrations over the Paris area. Atmos. Environ., 35 , 24492461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., and Coauthors, 2003a: Paris emission inventory diagnostics from ESQUIF airborne measurements and a chemistry transport model. J. Geophys. Res., 108 .8564, doi:10.1029/2002JD002797.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., and Coauthors, 2003b: A synthesis of the air pollution over the Paris region (ESQUIF) field campaign. J. Geophys. Res., 108 .8558, doi:10.1029/2003JD003380.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., Honore C. , Beekman M. , and Rouil L. , 2005: Simulation of ozone during the August 2003 heat wave and emission control scenarios. Atmos. Environ., 39 , 29572967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vautard, R., and Coauthors, 2007: Evaluation and intercomparison of ozone and PM10 simulations by several chemistry transport models over four European cities within the CityDelta project. Atmos. Environ., 41 , 173188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinuesa, J-F., and de Arellano J. V-G. , 2005: Introducing effective reaction rates to account for inefficient mixing in the convective boundary layer. Atmos. Environ., 39 , 445461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wesely, M., 1989: Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos. Environ., 23 , 12931304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WHO, 2000: Air Quality Guidelines for Europe. 2nd ed. WHO European Series, Vol. 91, WHO Regional Publications, 273 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 396 134 9
PDF Downloads 247 77 11

Does an Increase in Air Quality Models’ Resolution Bring Surface Ozone Concentrations Closer to Reality?

Myrto ValariLaboratoire de Météorologie Dynamique, Ecole Polytechnique, Palaiseau, France

Search for other papers by Myrto Valari in
Current site
Google Scholar
PubMed
Close
and
Laurent MenutLaboratoire de Météorologie Dynamique, Ecole Polytechnique, Palaiseau, France

Search for other papers by Laurent Menut in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A persistent challenge for small-scale air quality modeling is the assessment of health impact and population exposure studies. Despite progress in computation and in the quality of model input (i.e., high-resolution information on land use and emission patterns), the uncertainty associated with input parameters cannot be eliminated. The aim of this paper is to study different sources of uncertainty that affect model results as the resolution increases. Mesoscale chemistry transport simulations at different resolutions are used and modeled 03 concentrations are compared with surface measurements. The case study consists of CHIMERE model simulations over the city of Paris. It is shown that the principal source of noise in model results is the resolution of the input emission fluxes. The O3 concentrations modeled with simulations forced by several horizontal resolutions of input emission data (from Δx = 48 km to Δx = 6 km) indicate that model results do not improve monotonously with resolution, but that after a certain point discrepancies become larger. Based on this result and as an alternative to the deterministic downscaling that resolves explicitly the finer scale (beyond the 1-km range), the authors propose a subgrid-scale approach that uses a statistical description of spatial scales finer than model resolution. As an example, the subgrid variability of modeled O3 concentration has been quantified, when modeled dry deposition processes occur over subgrid surfaces (land use fractions). The implementation of this modified calculation gives access to subgrid fluxes and subgrid surface concentrations instead of the mean values provided by the commonly used model calculation.

Corresponding author address: Myrto Valari, Laboratoire de Météorologie Dynamique, Ecole Polytechnique, 91128 Palaiseau, France. Email: myrto.valari@lmd.polytechnique.fr

Abstract

A persistent challenge for small-scale air quality modeling is the assessment of health impact and population exposure studies. Despite progress in computation and in the quality of model input (i.e., high-resolution information on land use and emission patterns), the uncertainty associated with input parameters cannot be eliminated. The aim of this paper is to study different sources of uncertainty that affect model results as the resolution increases. Mesoscale chemistry transport simulations at different resolutions are used and modeled 03 concentrations are compared with surface measurements. The case study consists of CHIMERE model simulations over the city of Paris. It is shown that the principal source of noise in model results is the resolution of the input emission fluxes. The O3 concentrations modeled with simulations forced by several horizontal resolutions of input emission data (from Δx = 48 km to Δx = 6 km) indicate that model results do not improve monotonously with resolution, but that after a certain point discrepancies become larger. Based on this result and as an alternative to the deterministic downscaling that resolves explicitly the finer scale (beyond the 1-km range), the authors propose a subgrid-scale approach that uses a statistical description of spatial scales finer than model resolution. As an example, the subgrid variability of modeled O3 concentration has been quantified, when modeled dry deposition processes occur over subgrid surfaces (land use fractions). The implementation of this modified calculation gives access to subgrid fluxes and subgrid surface concentrations instead of the mean values provided by the commonly used model calculation.

Corresponding author address: Myrto Valari, Laboratoire de Météorologie Dynamique, Ecole Polytechnique, 91128 Palaiseau, France. Email: myrto.valari@lmd.polytechnique.fr

Save