• Alves, J. O. S., Haines K. , and Anderson D. L. T. , 2001: Sea level assimilation experiments in the tropical Pacific. J. Phys. Oceanogr., 31 , 305323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, D. M., Huang W. , Guo Y-R. , Bourgeois A. J. , and Xiao Q. N. , 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132 , 897914.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennett, A. F., 1997: Inverse Methods in Physical Oceanography. Cambridge University Press, 346 pp.

  • Boer, G. J., 1983: Homogeneous and isotropic turbulence on the sphere. J. Atmos. Sci., 40 , 154163.

  • Buehner, M., 2005: Ensemble-derived stationary and flow-dependent background-error covariances: Evaluation in a quasi-operational NWP setting. Quart. J. Roy. Meteor. Soc., 131 , 10131043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohn, S. E., 1997: Estimation theory for data assimilation problems: Basic conceptual framework and some open questions. J. Meteor. Soc. Japan, 75 , 257288.

    • Search Google Scholar
    • Export Citation
  • Cohn, S. E., da Silva D. M. , Guo J. , Sienkiewicz M. , and Lamich D. , 1998: Assessing the effects of data selection with the DAO Physical-Space Statistical Analysis System. Mon. Wea. Rev., 126 , 29132926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Courtier, P., Thepaut J-N. , and Hollingsworth A. , 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120 , 13671387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Courtier, P., and Coauthors, 1998: The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: Formulation. Quart. J. Roy. Meteor. Soc., 124 , 17831807.

    • Search Google Scholar
    • Export Citation
  • Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press, 457 pp.

  • Daley, R., and Barker E. , 2001: NAVDAS: Formulation and diagnostics. Mon. Wea. Rev., 129 , 869883.

  • Dee, D. P., 1995: Online estimation of error covariance parameters for atmospheric data assimilation. Mon. Wea. Rev., 123 , 11281145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiGiacomo, P. M., and Holt B. , 2001: Satellite observations of small coastal ocean eddies in the Southern California Bight. J. Geophys. Res., 106 , 2252122543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., Moore A. M. , Arango H. G. , Cornuelle B. D. , Miller A. J. , Powell B. , Chua B. S. , and Bennett A. F. , 2007: Weak and strong constraint data assimilation in the inverse Regional Ocean Modeling System (ROMS): Development and application for a baroclinic coastal upwelling system. Ocean Modell., 16 , 160187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, M., Leutbecher M. , and Kelly G. A. , 2006: On the equivalence between Kalman smoothing and weak-constraint four-dimensional variational data assimilation. Quart. J. Roy. Meteor. Soc., 131 , 32353246.

    • Search Google Scholar
    • Export Citation
  • Fukumori, I., Raghunath R. , Fu R. L. , and Chao Y. , 1999: Assimilation of TOPEX/Poseidon altimeter data into a global ocean circulation model: How good are the results? J. Geophys. Res., 104 , 2564725665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and Cohn S. E. , 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125 , 723757.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, A., 1981: Kronecker Product and Matrix Calculus with Applications. Ellis Horwood Ltd., 160 pp.

  • Hamill, T. M., and Snyder C. , 2000: A hybrid ensemble Kalman filter–3D variational analysis scheme. Mon. Wea. Rev., 128 , 29052919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollingsworth, A., and Lönnberg P. , 1986: The statistical structure of short-range forecast error as determined from radiosonde data. Part I: The wind field. Tellus, 38A , 111136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ide, K., Courtier P. , Ghil M. , and Lorenc A. , 1997: Unified notation for data assimilation: Operational, sequential and variational. J. Meteor. Soc. Japan, 75 , 181189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., and McDougall T. J. , 1995: Minimal adjustment of hydrostatic profiles to achieve static stability. J. Atmos. Oceanic Technol., 12 , 381389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jazwinski, A. H., 1970: Stochastic Processes and Filtering Theory. Academic Press, 376 pp.

  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 341 pp.

  • Lermusiaux, P. F. J., and Robinson A. R. , 1999: Data assimilation via error subspace statistical estimation. Part I: Theory and schemes. Mon. Wea. Rev., 127 , 13851407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., and Navon I. M. , 2001: Optimality of variational data assimilation and its relationship with the Kalman filter and smoother. Quart. J. Roy. Meteor. Soc., 127 , 661683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., Chao Y. , and McWilliams J. C. , 2006: Computation of the streamfunction and velocity potential for limited and irregular domains. Mon. Wea. Rev., 134 , 33843394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., Chao Y. , McWilliams J. C. , and Ide K. , 2008: A three-dimensional variational data assimilation scheme for the Regional Ocean Modeling System: Implementation and basic experiments. J. Geophys. Res., 113 .C05002, doi:10.1029/2006JC004042.

    • Search Google Scholar
    • Export Citation
  • Liu, D. C., and Nocedal J. , 1989: On the limited memory BFGS method for large scale optimization. Math. Program., 45 , 503528.

  • Lönnberg, P., and Hollingsworth A. , 1986: The statistical structure of short-range forecast errors as determined from radiosonde data. Part II: The covariance of height and wind errors. Tellus, 38A , 137161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., 2003a: Modelling of error covariances by 4D-Var data assimilation. Quart. J. Roy. Meteor. Soc., 129 , 31673182.

  • Lorenc, A. C., 2003b: The potential of the ensemble Kalman filter for NWP—A comparison with 4D-Var. Quart. J. Roy. Meteor. Soc., 129 , 31833203.

  • Lorenc, A. C., and Coauthors, 2000: The Met Office global 3-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 26 , 29913012.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., McWilliams J. C. , and Shchepetkin A. F. , 2001: Open boundary conditions for long-term integration of regional ocean models. Ocean Modell., 3 , 120.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., McWilliams J. C. , and Shchepetkin A. , 2003: Equilibrium structure and dynamics of the California Current System. J. Phys. Oceanogr., 33 , 753783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, A. M., Arango H. G. , DiLorenzo E. , Cornuelle B. D. , Miller A. J. , and Neilson D. J. , 2004: A comprehensive ocean prediction and analysis system based on the tangent linear and adjoint of a regional ocean model. Ocean Modell., 7 , 227258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Research Council, 2003: Enabling Ocean Research in the. 21st Century: Implementation of a Network of Ocean Observatories. The National Academies Press, 220 pp.

    • Search Google Scholar
    • Export Citation
  • Navon, I. M., Zou X. , Derber J. , and Sela J. , 1992: Variational data assimilation with an adiabatic version of NMC spectral model. Mon. Wea. Rev., 120 , 14331446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nocedal, J., and Wright S. J. , 1999: Numerical Optimization. Springer-Verlag, 636 pp.

  • Paduan, J. D., and Graber H. C. , 1997: Introduction to high-frequency radar: Reality and myth. Oceanography, 10 , 3639.

  • Parrish, D. F., and Derber J. C. , 1992: The National Meteorological Center’s spectral-interpolation analysis system. Mon. Wea. Rev., 120 , 17471763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purser, R. J., Wu W-S. , Parrish D. F. , and Roberts N. M. , 2003: Numerical aspects of the application of recursive filters to variational statistical analysis. Part II: Spatially inhomogeneous and anisotropic general covariances. Mon. Wea. Rev., 131 , 15361548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rabier, F., Jarvinnen H. , Klinker E. , Mahfouf J-F. , and Simmons A. , 1998a: The ECMWF operational implementation of four-dimensional variational assimilation. Part I: Experimental results with simplified physics. Quart. J. Roy. Meteor. Soc., 126 , 11431170.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., McNally A. , Andersson E. , Courtier P. , Unden P. , Eyre J. , Hollingsworth A. , and Bouttier F. , 1998b: The ECMWF implementation of three-dimensional variational assimilation (3D-Var). II: Structure functions. Quart. J. Roy. Meteor. Soc., 124 , 18091829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasaki, Y., 1970: Some basic formalisms in numerical variational analysis. Mon. Wea. Rev., 98 , 875883.

  • Shchepetkin, A. F., and McWilliams J. C. , 2003: A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate. J. Geophys. Res., 108 .3090, doi:10.1029/2001JC001047.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and McWilliams J. C. , 2005: The Regional Ocean Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9 , 347404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., and Coauthors, 2002: Global ocean circulation during 1992–1997, estimated from ocean observations and a general circulation model. J. Geophys. Res., 107 .3118, doi:10.1029/2001JC000888.

    • Search Google Scholar
    • Export Citation
  • Tikhonov, A. N., and Arsenin V. , 1977: Solutions of Ill-Posed Problems. Halsted Press, 258 pp.

  • Troccoli, A., and Haines K. , 1999: Use of the temperature–salinity relation in a data assimilation context. J. Atmos. Oceanic Technol., 16 , 20112025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vossepoel, F. C., Reynolds R. W. , and Miller L. , 1999: Use of sea level observations to estimate salinity variability in the tropical Pacific. J. Atmos. Oceanic Technol., 16 , 14011415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., Hamill T. M. , Whitaker J. S. , and Bishop C. H. , 2007: A comparison of hybrid ensemble transform Kalman filter–optimum interpolation and ensemble square root filter analysis schemes. Mon. Wea. Rev., 135 , 10551076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1996: The Ocean Circulation Inverse Problem. Cambridge University Press, 458 pp.

  • Xu, Q., and Li W. , 2001: Estimation of three-dimensional error covariances. Part II: Analysis of wind innovation vectors. Mon. Wea. Rev., 129 , 29392954.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 630 218 20
PDF Downloads 412 120 10

A Three-Dimensional Variational Data Assimilation Scheme for the Regional Ocean Modeling System

Zhijin LiJet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Zhijin Li in
Current site
Google Scholar
PubMed
Close
,
Yi ChaoJet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Yi Chao in
Current site
Google Scholar
PubMed
Close
,
James C. McWilliamsDepartment of Atmospheric and Oceanic Sciences, Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

Search for other papers by James C. McWilliams in
Current site
Google Scholar
PubMed
Close
, and
Kayo IdeDepartment of Atmospheric and Oceanic Sciences, Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

Search for other papers by Kayo Ide in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A three-dimensional variational data assimilation (3DVAR) scheme has been developed within the framework of the Regional Ocean Modeling System (ROMS). This ROMS3DVAR enables the capability of predicting meso- to small-scale variations with temporal scales from hours to days in coastal oceans. To cope with particular difficulties that result from complex coastlines and bottom topography, unbalanced flows, and sparse observations, ROMS3DVAR includes novel strategies. These strategies include the implementation of three-dimensional anisotropic and inhomogeneous error correlations based on a Kronecker product, application of particular weak dynamic constraints, and implementation of efficient and reliable algorithms for minimizing the cost function. The formulation of ROMS3DVAR is presented here, and its implementation off the West Coast is currently under way.

Corresponding author address: Zhijin Li, Jet Propulsion Laboratory, M/S 300–323, 4800 Oak Grove Drive, Pasadena, CA 91109. Email: zhijin.li@jpl.nasa.gov

Abstract

A three-dimensional variational data assimilation (3DVAR) scheme has been developed within the framework of the Regional Ocean Modeling System (ROMS). This ROMS3DVAR enables the capability of predicting meso- to small-scale variations with temporal scales from hours to days in coastal oceans. To cope with particular difficulties that result from complex coastlines and bottom topography, unbalanced flows, and sparse observations, ROMS3DVAR includes novel strategies. These strategies include the implementation of three-dimensional anisotropic and inhomogeneous error correlations based on a Kronecker product, application of particular weak dynamic constraints, and implementation of efficient and reliable algorithms for minimizing the cost function. The formulation of ROMS3DVAR is presented here, and its implementation off the West Coast is currently under way.

Corresponding author address: Zhijin Li, Jet Propulsion Laboratory, M/S 300–323, 4800 Oak Grove Drive, Pasadena, CA 91109. Email: zhijin.li@jpl.nasa.gov

Save