• Deuber, B., and Coauthors, 2005: Middle Atmospheric Water Vapour Radiometer (MIAWARA): Validation and first results of the LAPBIAT Upper Tropospheric Lower Stratospheric Water Vapour Validation Project (LAUTLOS-WAVVAP) campaign. J. Geophys. Res., 110 .D13306, doi:10.1029/2004JD005543.

    • Search Google Scholar
    • Export Citation
  • Forster, P., , and Shine K. , 2002: Assessing the climate impact of trends in stratospheric water vapor. Geophys. Res. Lett., 29 .1086, doi:10.1029/2001GL013909.

    • Search Google Scholar
    • Export Citation
  • Fujiwara, M., , Shiotani M. , , Hasebe F. , , Vömel H. , , Oltmans S. J. , , Ruppert P. W. , , Horinouchi T. , , and Tsuda T. , 2003: Performance of the Meteolabor “Snow White” chilled-mirror hygrometer in the tropical troposphere: Comparisons with the Vaisala RS-80 A/H-Humicap sensors. J. Atmos. Oceanic Technol., 20 , 15341542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hyland, R., , and Wexler A. , 1983: Formulations for the thermodynamic properties of the saturated phases of H2O from 173.15K to 473.15K. ASHRAE Trans., 89 , 500519.

    • Search Google Scholar
    • Export Citation
  • John, V. O., , and Buehler S. A. , 2005: Comparison of microwave satellite humidity data and radiosonde profiles: A survey of European stations. Atmos. Chem. Phys., 5 , 15291550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leiterer, U., , Dier H. , , and Naebert T. , 1997: Improvements in radiosonde humidity profiles using RS80/RS90 radiosondes of Vaisala. Contrib. Atmos. Phys., 70 , 319336.

    • Search Google Scholar
    • Export Citation
  • Leiterer, U., , Dier H. , , Nagel D. , , Naebert T. , , Althausen D. , , and Franke K. , cited. 2000: Method for correction of RS80 A-Humicap humidity profiles. [Available online at http://www.met-office.gov.uk/research/interproj/radiosonde/reports/leiterer.pdf.].

  • Leiterer, U., , Althausen D. , , Franke K. , , Katz A. , , and Wegner F. , 2005: Correction method for RS80-A Humicap humidity profiles and their validation by lidar backscattering profiles in tropical cirrus clouds. J. Atmos. Oceanic Technol., 22 , 1829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miloshevich, L., , Vömel H. , , Paukkunen A. , , Heymsfield A. J. , , and Oltmans S. J. , 2001: Characterization and correction of relative humidity measurements from Vaisala RS80-A radiosondes at cold temperatures. J. Atmos. Oceanic Technol., 18 , 135156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miloshevich, L., , Paukkunen A. , , Vömel H. , , and Oltmans S. , 2002: Impact of Vaisala radiosonde humidity corrections on ARM IOP data. Proc. 12th Atmospheric Radiation Measurement (ARM) Science Team Meeting, St. Petersburg, FL, U.S. Department of Energy, 251–258. [Available online at http://www.arm.gov/publications/proceedings/conf12/extended_abs/miloshevich-lm.pdf.].

  • Miloshevich, L., , Paukkunen A. , , Vömel H. , , and Oltmans S. , 2004: Development and validation of a time-lag correction for Vaisala radiosonde humidity measurements. J. Atmos. Oceanic Technol., 21 , 13051327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miloshevich, L., , Vömel H. , , Whiteman D. , , Lesht B. , , Schmidlin F. , , and Russo F. , 2006: Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G, and implications for AIRS validation. J. Geophys. Res., 111 .D09S10, doi:10.1029/2005JD006083.

    • Search Google Scholar
    • Export Citation
  • Nagel, D., , Leiterer U. , , Dier H. , , Kats A. , , Reichhardt J. , , and Behrendt A. , 2001: High accuracy humidity measurements using the standardized frequency method in a research upper-air sounding system. Meteor. Z., 10 , 395405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, J., , Smout R. , , Oakley T. , , Pathack P. , , and Kurnosenko S. , cited. 2005: WMO intercomparison of high quality radiosonde systems, Vacoas, Mauritius, 2–25 February 2005. WMO Commission on Instruments and Methods of Observation, Final Rep., 118 pp. [Available online at http://www.wmo.ch/pages/prog/www/IMOP/reports/2003-2007/RSO-IC-2005_Final_Report.pdf.].

  • Paukkunen, A., 1995: Sensor heating to enhance reliability of radiosonde humidity measurement. Proc. 11th Conf. on Interactive Information and Processing Systems for Meteorology, Oceanography, and Hydrology, Dallas, TX, Amer. Meteor. Soc., 103–106.

  • Paukkunen, A., , Antikainen V. , , and Jauhiainen H. , 2001: The accuracy and performance of the new Vaisala RS90 radiosonde in operational use. Proc. 11th Symp. on Meteorological Observations and Instrumentation, Albuquerque, NM, Amer. Meteor. Soc., 4.5.

  • Revercomb, H. E., and Coauthors, 2003: The ARM program’s water vapor intensive observation periods. Bull. Amer. Meteor. Soc., 84 , 217236.

  • Turner, D. D., , Lesht B. M. , , Clough S. A. , , Liljegren J. C. , , Revercomb H. E. , , and Tobin D. C. , 2003: Dry bias and variability in Vaisala RS80-H radiosondes: The ARM experience. J. Atmos. Oceanic Technol., 20 , 117132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vasic, V., , Feist D. , , Muller S. , , and Kampfer N. , 2005: An airborne radiometer for stratospheric water vapor measurements at 183 GHz. IEEE Trans. Geosci. Remote Sens., 43 , 15631570.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaughan, G., , Cambridge C. , , Dean L. , , and Phillips A. , 2005: Water vapour and ozone profiles in the midlatitude upper troposphere. Atmos. Chem. Phys., 5 , 963971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vömel, H., , Oltmans S. J. , , Hofmann D. J. , , Deshler T. , , and Rosen J. M. , 1995: The evolution of the dehydration in the Antarctic stratospheric vortex. J. Geophys. Res., 100 , 1391913926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vömel, H., , Fujiwara M. , , Shirotami M. , , Hasebe F. , , Oltmans S. J. , , and Barnes J. E. , 2003: The behavior of the Snow White chilled-mirror hygrometer in extremely dry conditions. J. Atmos. Oceanic Technol., 20 , 15601567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vömel, H., , David D. , , and Smith K. , 2007a: Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer: Instrumental details and observations. J. Geophys. Res., 112 .D08305, doi:10.1029/2006JD007224.

    • Search Google Scholar
    • Export Citation
  • Vömel, H., and Coauthors, 2007b: Radiation dry bias of the Vaisala RS92 humidity sensor. J. Atmos. Oceanic Technol., 24 , 953963.

  • Vömel, H., , Yushkov V. , , Khaykin S. , , Korshunov L. , , Kyrö E. , , and Kivi R. , 2007c: Intercomparisons of stratospheric water vapor sensors: FLASH-B and NOAA/CMDL frost-point hygrometer. J. Atmos. Oceanic Technol., 24 , 941952.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., , Cole H. L. , , Carlson D. J. , , Miller E. R. , , Beierle K. , , Paukkunen A. , , and Laine T. K. , 2002: Corrections of humidity measurement errors from the Vaisala RS80 radiosonde—Application to TOGA COARE data. J. Atmos. Oceanic Technol., 19 , 9811002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yushkov, V., , Astakhov V. , , and Merkulov S. , 1998: Optical balloon hygrometer for upper-troposphere and stratosphere water vapor measurements. Proc. SPIE, 3501 , 439445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yushkov, V., , Merkoulov S. , , Astakhov V. , , Pommereau J. P. , , and Garnier A. , 2000: A Lyman alpha hygrometer for long duration IR Montgolfier during the Lagrangian-THESEO experiment. Stratospheric Ozone 1999, Proc. Fifth European Symp. on Stratospheric Ozone, EC Air Pollution Research Rep. 73, Saint-Jean de Luz, France, European Commission, 400–403.

  • Yushkov, V., and Coauthors, 2005: Vertical distribution of water vapor in Arctic stratosphere based on LAUTLOS field campaign in January–February 2004. Izv. Fiz. Atmos. I Okeana, 41 , 19.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 38 38 4
PDF Downloads 21 21 3

Tropospheric Comparisons of Vaisala Radiosondes and Balloon-Borne Frost-Point and Lyman-α Hygrometers during the LAUTLOS-WAVVAP Experiment

View More View Less
  • 1 Arctic Research Centre, Finnish Meteorological Institute, Sodankylä, Finland
  • | 2 Central Aerological Observatory, Dolgoprundy, Russia
  • | 3 Institute of Applied Physics, University of Bern, Bern, Switzerland
  • | 4 Meteorological Observatory Lindenberg, German Weather Service, Lindenberg, Germany
  • | 5 National Center for Atmospheric Research, Boulder, Colorado
  • | 6 Alfred Wegener Institute, Potsdam, Germany
  • | 7 Vaisala Oyj, Helsinki, Finland
  • | 8 Meteolabor AG, Wetzikon, Switzerland
  • | 9 CIRES, University of Colorado, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

The accuracy of all types of Vaisala radiosondes and two types of Snow White chilled-mirror hygrosondes was assessed in an intensive in situ comparison with reference hygrometers. Fourteen nighttime reference comparisons were performed to determine a working reference for the radiosonde comparisons. These showed that the night version of the Snow White agreed best with the references [i.e., the NOAA frost-point hygrometer (FPH) and University of Colorado cryogenic frost-point hygrometer (CFH)], but that the daytime version had severe problems with contamination in the humid upper troposphere. Since the RS92 performance was superior to the other radiosondes and to the day version of the Snow White, it was selected to be the working reference. According to the reference comparison, the RS92 has no bias in the mid- and lower troposphere, with deviations <±5% in relative humidity (RH). In the upper troposphere, the RS92 has a ∼5% RH wet bias, which is partly due to the RS92 time lag error and the termination of the heating cycle. It was shown that the time lag effects relating to Vaisala radiosondes can be corrected. Because these were nighttime comparisons, they can be considered to be free from solar radiation effects. Neither the radiosondes nor the Snow White succeeded in reproducing reference class hygrometer profiles in the stratosphere.

According to the 29 radiosonde intercomparisons, the RS92 and the modified RS90 (FN) had the best mutual agreement and no bias. The disagreement is largest (<±10% RH) at low temperatures (T ≪ −30°C), where the FN underestimated (overestimated) in high (low) ambient RH. In comparison with the RS92, the RS90 had a semilinearly increasing wet bias with decreasing temperature, where the bias was ∼10% RH at −60°C. The RS80-A suffers from a large temperature-dependent dry bias in high RH conditions, being over 30% RH at −60°C and ∼5% RH near 0°C. The RS80-A dry bias can be almost totally removed with the correction algorithm by Leiterer et al., which was chosen as the best available. The other approach tested tends to overcorrect in high RH conditions when T < −50°C. For T > −30°C it is ineffective and does not correct the RS80-A dry bias in high ambient RH.

Corresponding author address: T. M. Suortti, Arctic Research Centre, Finnish Meteorological Institute, Tähteläntie 62, 99600 Sodankylä, Finland. Email: tuomo.suortti@fmi.fi

Abstract

The accuracy of all types of Vaisala radiosondes and two types of Snow White chilled-mirror hygrosondes was assessed in an intensive in situ comparison with reference hygrometers. Fourteen nighttime reference comparisons were performed to determine a working reference for the radiosonde comparisons. These showed that the night version of the Snow White agreed best with the references [i.e., the NOAA frost-point hygrometer (FPH) and University of Colorado cryogenic frost-point hygrometer (CFH)], but that the daytime version had severe problems with contamination in the humid upper troposphere. Since the RS92 performance was superior to the other radiosondes and to the day version of the Snow White, it was selected to be the working reference. According to the reference comparison, the RS92 has no bias in the mid- and lower troposphere, with deviations <±5% in relative humidity (RH). In the upper troposphere, the RS92 has a ∼5% RH wet bias, which is partly due to the RS92 time lag error and the termination of the heating cycle. It was shown that the time lag effects relating to Vaisala radiosondes can be corrected. Because these were nighttime comparisons, they can be considered to be free from solar radiation effects. Neither the radiosondes nor the Snow White succeeded in reproducing reference class hygrometer profiles in the stratosphere.

According to the 29 radiosonde intercomparisons, the RS92 and the modified RS90 (FN) had the best mutual agreement and no bias. The disagreement is largest (<±10% RH) at low temperatures (T ≪ −30°C), where the FN underestimated (overestimated) in high (low) ambient RH. In comparison with the RS92, the RS90 had a semilinearly increasing wet bias with decreasing temperature, where the bias was ∼10% RH at −60°C. The RS80-A suffers from a large temperature-dependent dry bias in high RH conditions, being over 30% RH at −60°C and ∼5% RH near 0°C. The RS80-A dry bias can be almost totally removed with the correction algorithm by Leiterer et al., which was chosen as the best available. The other approach tested tends to overcorrect in high RH conditions when T < −50°C. For T > −30°C it is ineffective and does not correct the RS80-A dry bias in high ambient RH.

Corresponding author address: T. M. Suortti, Arctic Research Centre, Finnish Meteorological Institute, Tähteläntie 62, 99600 Sodankylä, Finland. Email: tuomo.suortti@fmi.fi

Save