• Anagnostou, E. N., , and Krajewski W. F. , 1997: Simulation of radar reflectivity fields: Algorithm formulation and evaluation. Water Resour. Res., 33 , 14191428.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brotzge, J. A., , Brewster K. , , Johnson B. , , Philips B. , , Preston M. , , Westbrook D. , , and Zink M. , 2005: CASA’s first test bed: Integrative Project #1. Preprints, 32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., 14R.2.

  • Capsoni, C., , and D’Amico M. , 1998: A physically based radar simulator. J. Atmos. Oceanic Technol., 15 , 593598.

  • Capsoni, C., , D’Amico M. , , and Nebuloni R. , 2001: A multiparameter polarimetric radar simulator. J. Atmos. Oceanic Technol., 18 , 17991809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caumont, O., and Coauthors, 2006: A radar simulator for high-resolution nonhydrostatic models. J. Atmos. Oceanic Technol., 23 , 10491067.

  • Chandrasekar, V., , and Bringi V. N. , 1987: Simulation of radar reflectivity and surface measurements of rainfall. J. Atmos. Oceanic Technol., 4 , 464478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheong, B. L., , Hoffman M. W. , , and Palmer R. D. , 2004a: Efficient atmospheric simulation for high-resolution radar imaging applications. J. Atmos. Oceanic Technol., 21 , 374378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheong, B. L., , Hoffman M. W. , , Palmer R. D. , , Frasier S. J. , , and López-Dekker F. J. , 2004b: Pulse pair beamforming and the effects of reflectivity field variations on imaging radars. Radio Sci., 39 .RS3014, doi:10.1029/2002RS002843.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., , and Zrnić D. S. , 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • Fabry, F., , Frush C. , , Zawadzki I. , , and Kilambi A. , 1997: On the extraction of near-surface index of refraction using radar phase measurements from ground targets. J. Atmos. Oceanic Technol., 14 , 978987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., , Brewster K. , , and Xue M. , 2006: A comparison of the radar ray path equations and approximations for use in radar data assimilations. Adv. Atmos. Sci., 23 , 190198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holdsworth, D. A., , and Reid I. M. , 1995: A simple model of atmospheric radar backscatter: Description and application to the full correlation analysis of spaced antenna data. Radio Sci., 30 , 12631280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, Y., , Xue M. , , Zhang G. , , and Straka J. , 2008: Assimilation of simulated polarimetric radar data for a convective storm using ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables. Mon. Wea. Rev., in press.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., , Raghavan R. , , and Chandrasekar V. , 1993: Physically based simulation of radar rainfall data using a space–time rainfall model. J. Appl. Meteor., 32 , 268283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, S., , Xue M. , , and Xu Q. , 2007: Using wavelet analysis to detect tornadoes from Doppler radar radial-velocity observations. J. Atmos. Oceanic Technol., 24 , 344359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., , and Palmer W. M. , 1948: The distribution of raindrops with size. J. Meteor., 5 , 165166.

  • May, R. M., , Biggerstaff M. I. , , and Xue M. , 2007: A Doppler radar emulator with an application to the detectability of tornadic signatures. J. Atmos. Oceanic Technol., 24 , 19731996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Metropolis, N., , and Ulam S. , 1949: The Monte Carlo method. J. Amer. Stat. Assoc., 44 , 335341.

  • Palmer, R. D., , Gopalam S. , , Yu T. , , and Fukao S. , 1998: Coherent radar imaging using Capon’s method. Radio Sci., 33 , 15851598.

  • Ray, P. S., , Johnson B. C. , , Johnson K. W. , , Bradberry J. S. , , Stephens J. J. , , Wagner K. K. , , and Klemp J. B. , 1981: The morphology of severe tornadic storms on 20 May 1997. J. Atmos. Sci., 38 , 16431663.

    • Search Google Scholar
    • Export Citation
  • Rinehart, R. E., 1997: Radar for Meteorologists. 3rd ed. Rinehart Publications, 482 pp.

  • Smith P. L. Jr., , , Myers C. G. , , and Orville H. D. , 1975: Radar reflectivity factor calculations in numerical cloud models using bulk parameterization of precipitation. J. Appl. Meteor., 14 , 11561165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoica, P., , and Moses R. , 1997: Introduction to Spectral Analysis. Prentice-Hall, 319 pp.

  • Tong, M., , and Xue M. , 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133 , 17891807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of raindrop size distribution. J. Climate Appl. Meteor., 22 , 17641775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., , Droegemeier K. K. , , and Wong V. , 2000: The Advanced Regional Prediction System (ARPS)—A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75 , 161193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2001: The Advanced Regional Prediction System (ARPS)—A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys., 76 , 143165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., , Wang D-H. , , Gao J-D. , , Brewster K. , , and Droegemeier K. K. , 2003: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteor. Atmos. Phys., 82 , 139170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., , Liu S. , , and Yu T. , 2007: Variational analysis of oversampled dual-Doppler radial velocity data and application to the analysis of tornado circulations. J. Atmos. Oceanic Technol., 24 , 403414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, T-Y., , Palmer R. D. , , and Hysell D. L. , 2000: A simulation study of coherent radar imaging. Radio Sci., 35 , 11291141.

  • Zrnić, D. S., 1975: Simulation of weatherlike Doppler spectra and signals. J. Appl. Meteor., 14 , 619620.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 94 94 9
PDF Downloads 98 98 12

A Time Series Weather Radar Simulator Based on High-Resolution Atmospheric Models

View More View Less
  • 1 School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • | 2 School of Meteorology, and Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma
© Get Permissions
Restricted access

Abstract

A three-dimensional radar simulator capable of generating simulated raw time series data for a weather radar has been designed and implemented. The characteristics of the radar signals (amplitude, phase) are derived from the atmospheric fields from a high-resolution numerical weather model, although actual measured fields could be used. A field of thousands of scatterers is populated within the field of view of the virtual radar. Reflectivity characteristics of the targets are determined from well-known parameterization schemes. Doppler characteristics are derived by forcing the discrete scatterers to move with the three-dimensional wind field. Conventional moment-generating radar simulators use atmospheric conditions and a set of weighting functions to produce theoretical moment maps, which allow for the study of radar characteristics and limitations given particular configurations. In contrast to these radar simulators, the algorithm presented here is capable of producing sample-to-sample time series data that are collected by a radar system of virtually any design. Thus, this new radar simulator allows for the test and analysis of advanced topics, such as phased array antennas, clutter mitigation schemes, waveform design studies, and spectral-based methods. Limited examples exemplifying the usefulness and flexibility of the simulator will be provided.

Corresponding author address: Dr. Boon Leng Cheong, School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Suite 5900, Norman, OK 73072. Email: boonleng@ou.edu

Abstract

A three-dimensional radar simulator capable of generating simulated raw time series data for a weather radar has been designed and implemented. The characteristics of the radar signals (amplitude, phase) are derived from the atmospheric fields from a high-resolution numerical weather model, although actual measured fields could be used. A field of thousands of scatterers is populated within the field of view of the virtual radar. Reflectivity characteristics of the targets are determined from well-known parameterization schemes. Doppler characteristics are derived by forcing the discrete scatterers to move with the three-dimensional wind field. Conventional moment-generating radar simulators use atmospheric conditions and a set of weighting functions to produce theoretical moment maps, which allow for the study of radar characteristics and limitations given particular configurations. In contrast to these radar simulators, the algorithm presented here is capable of producing sample-to-sample time series data that are collected by a radar system of virtually any design. Thus, this new radar simulator allows for the test and analysis of advanced topics, such as phased array antennas, clutter mitigation schemes, waveform design studies, and spectral-based methods. Limited examples exemplifying the usefulness and flexibility of the simulator will be provided.

Corresponding author address: Dr. Boon Leng Cheong, School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Suite 5900, Norman, OK 73072. Email: boonleng@ou.edu

Save