• Anderson, G. P., , Clough S. A. , , Kneizys F. X. , , Chetwynd J. H. , , and Shettle E. P. , 1986: AFGL Atmospheric Constituent Profiles (0-120 km). AFGL-TR-86-0110, 43 pp.

  • Anderson, G. P., and Coauthors, 2000: MODTRAN4: Radiative transfer modeling for remote sensing. Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, S. S. Chen and M. R. Descour, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 4049), 176–183.

    • Search Google Scholar
    • Export Citation
  • Aonashi, K., , Iwabuchi T. , , Shoji Y. , , Ohtani R. , , and Ichikawa R. , 2004: Statistical study on precipitable water content variations observed with ground-based microwave radiometers. J. Meteor. Soc. Japan, 82 , 269275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aristidi, E., and Coauthors, 2005: An analysis of temperatures and wind speeds above Dome C, Antarctica. Astron. Astrophys., 430 , 739746.

  • Bally, J., 1989: Atmospheric transparency over Antarctica from the mid-infrared to centimeter wavelengths. Astrophysics in Antarctica, D. J. Mullan, M. A. Pomerantz, and T. Stanev, Eds., AIP Press, 100–105.

    • Search Google Scholar
    • Export Citation
  • Bartels, R. A., 1986: Comments on “Precipitable water measurements with sun photometers”. J. Climate Appl. Meteor., 25 , 17881790.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bird, R. E., , and Hulstrom R. L. , 1982: Precipitable water measurements with sun photometers. J. Appl. Meteor., 21 , 11961201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burton, M. G., and Coauthors, 1994: The scientific potential for astronomy from the Antarctic Plateau. Publ. Astron. Soc. Aust., 11 , 127150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bussmann, R. S., , Holzapfel W. L. , , and Kuo C. L. , 2005: Millimeter wavelength brightness fluctuations of the atmosphere above the South Pole. Astrophys. J., 622 , 13431355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calisse, P. G., , Ashley M. C. B. , , Burton M. G. , , Phillips M. A. , , Storey J. W. V. , , Radford S. J. E. , , and Peterson J. B. , 2004: Submillimeter site testing at Dome C, Antarctica. Publ. Astron. Soc. Aust., 21 , 256263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiou, E-W., , McCormick M. P. , , and Chu W. P. , 1997: Global water vapor distributions in the stratosphere and upper troposphere derived from 5.5 years of SAGE II observations (1986–1991). J. Geophys. Res., 102 , 1910519118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curtis, A. R., 1952: Discussion of “A statistical model for water vapor absorption”. Quart. J. Roy. Meteor. Soc., 78 , 638640.

  • Di Carmine, C., , Campanelli M. , , Nakajima T. , , Tomasi C. , , and Vitale V. , 2005: Retrievals of Antarctic aerosol characteristics using a Sun-sky radiometer during the 2001–2002 austral summer campaign. J. Geophys. Res., 110 .D13202, doi:10.1029/2004JD005280.

    • Search Google Scholar
    • Export Citation
  • Eldridge, R. G., 1967: Water vapor absorption of visible and near infrared radiation. Appl. Opt., 6 , 709713.

  • Gates, D. M., 1956: Infrared determination of precipitable water vapour in a vertical column of the Earth’s atmosphere. J. Meteor., 13 , 369375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gates, D. M., , and Harrop W. J. , 1963: Infrared transmission of the atmosphere to solar radiation. Appl. Opt., 2 , 887898.

  • Godson, W. L., 1955: The computation of infrared transmission by atmospheric water vapor. J. Meteor., 12 , 272284.

  • Goody, R. M., 1964: Band models. Atmospheric Radiation I: Theoretical Basis, Oxford Monograph on Meteorology, Oxford University Press, 122–170.

    • Search Google Scholar
    • Export Citation
  • Gueymard, C. A., 2004: The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Sol. Energy, 76 , 423453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harries, J. E., and Coauthors, 1996: Validation of measurements of water vapor from the Halogen Occultation Experiment (HALOE). J. Geophys. Res., 101 , 1020510216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iqbal, M., 1983: The solar constant and its spectral distribution. An Introduction to Solar Radiation, Academic Press, 44–50.

  • Kasten, F., 1966: A new table and approximation formula for the relative optical air mass. Arch. Meteorol. Geophys. Bioklimatol., B14 , 206223.

    • Search Google Scholar
    • Export Citation
  • Lahoz, W. A., and Coauthors, 1996: Vortex dynamics and the evolution of water vapour in the stratosphere of the Southern Hemisphere. Quart. J. Roy. Meteor. Soc., 122 , 423450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, J. S., , Ashley M. C. B. , , Tokovinin A. , , and Travouillon T. , 2004: Exceptional astronomical seeing conditions above Dome C in Antarctica. Nature, 431 , 278281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miloshevich, L. M., , Paukkunen A. , , Vömel H. , , and Oltmans S. J. , 2004: Development and validation of a time-lag correction for Vaisala radiosonde humidity measurements. J. Atmos. Oceanic Technol., 21 , 13051327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miloshevich, L. M., , Vömel H. , , Whiteman D. N. , , Lesht B. M. , , Schmidlin F. J. , , and Russo F. , 2006: Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation. J. Geophys. Res., 111 .D09S10, doi:10.1029/2005JD006083.

    • Search Google Scholar
    • Export Citation
  • Neckel, H., , and Labs D. , 1984: The solar radiation between 3300 and 12500 Å. Sol. Phys., 90 , 205258.

  • Pitts, D. E., , McAllum W. E. , , Heidt M. , , Jeske K. , , Lee J. T. , , DeMonbrun D. , , Morgan A. , , and Potter J. , 1977: Temporal variations in atmospheric water vapor and aerosol optical depth determined by remote sensing. J. Appl. Meteor., 16 , 13121321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , Wu F. , , Gettelman A. , , Russell J. M. III, , Zawodny J. M. , , and Oltmans S. J. , 2001: Seasonal variation of water vapor in the lower stratosphere observed in Halogen Occultation Experiment data. J. Geophys. Res., 106 , 1431314326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rind, D., , Chiou E-W. , , Chu W. , , Oltmans S. , , Lerner J. , , Larsen J. , , McCormick M. P. , , and McMaster L. , 1993: Overview of the Stratospheric Aerosol and Gas Experiment II water vapor observations: Method, validation, and data characteristics. J. Geophys. Res., 98 , 48354856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosen, J. M., , Kjome N. T. , , and Oltmans S. J. , 1991: Balloon borne observations of backscatter, frost point and ozone in polar stratospheric clouds at the South Pole. Geophys. Res. Lett., 18 , 171174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thome, K. J., , Herman B. M. , , and Reagan J. A. , 1992: Determination of precipitable water from solar transmission. J. Appl. Meteor., 31 , 157165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thome, K. J., , Smith M. W. , , Palmer J. M. , , and Reagan J. A. , 1994: Three-channel solar radiometer for the determination of atmospheric columnar water vapor. Appl. Opt., 33 , 58115819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomasi, C., , and Guzzi R. , 1974: High precision atmospheric hygrometry using the solar infrared spectrum. J. Phys. E: Sci. Instrum., 7 , 647649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomasi, C., , Vitale V. , , Tagliazucca M. , , and Gasperoni L. , 1990: Infrared hygrometry measurements at Terra Nova Bay. SIF Conf. Proc., 27 , 187200.

    • Search Google Scholar
    • Export Citation
  • Tomasi, C., , Cacciari A. , , Vitale V. , , Lupi A. , , Lanconelli C. , , Pellegrini A. , , and Grigioni P. , 2004: Mean vertical profiles of temperature and absolute humidity from a twelve-year radiosounding data set at Terra Nova Bay (Antarctica). Atmos. Res., 71 , 139169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomasi, C., , Vitale V. , , Petkov B. , , Lupi A. , , and Cacciari A. , 2005: Improved algorithm for calculations of Rayleigh-scattering optical depth in standard atmospheres. Appl. Opt., 44 , 33203341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomasi, C., and Coauthors, 2006: Characterization of the atmospheric temperature and moisture conditions above Dome C (Antarctica) during austral summer and fall months. J. Geophys. Res., 111 .D20305, doi:10.1029/2005JD006976.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., , Lesht B. M. , , Clough S. A. , , Liljegren J. C. , , Revercomb H. E. , , and Tobin D. C. , 2003: Dry bias and variability in Vaisala RS80-H radiosondes: The ARM experience. J. Atmos. Oceanic Technol., 20 , 117132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valenziano, L., , and Dall’Oglio G. , 1999: Millimetre astronomy from the High Antarctic Plateau: Site testing at Dome C. Publ. Astron. Soc. Aust., 16 , 167174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valenziano, L., and Coauthors, 1998: APACHE96. CMBR anisotropy experiment at Dome C. Proc. Astron. Soc. Pac., 141 , 8189.

  • Vitale, V., , and Tomasi C. , 1990: Atmospheric turbidity measurements at Terra Nova Bay with the multispectral sun-photometer model UVISIR. SIF Conf. Proc., 27 , 89104.

    • Search Google Scholar
    • Export Citation
  • Volz, F. E., 1974: Economical multispectral sun photometer for measurements of aerosol extinction from 0.44 μm to 1.6 μm and precipitable water. Appl. Opt., 13 , 17321733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walden, V. P., , Roth W. L. , , Stone R. S. , , and Halter B. , 2006: Radiometric validation of the Atmospheric Infrared Sounder over the Antarctic Plateau. J. Geophys. Res., 111 .D09S03, doi:10.1029/2005JD006357.

    • Search Google Scholar
    • Export Citation
  • Wang, J., , Cole H. L. , , Carlson D. J. , , Miller E. R. , , Beierle K. , , Paukkunen A. , , and Laine T. K. , 2002: Corrections of humidity measurement errors from the Vaisala RS80 radiosonde—Application to TOGA COARE data. J. Atmos. Oceanic Technol., 19 , 9811002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westwater, E., , Han Y. , , Shupe M. , , and Matrosov S. , 2001: Analysis of integrated cloud liquid and precipitable water vapor retrievals from microwave radiometers during the Surface Heat Budget of the Arctic Ocean project. J. Geophys. Res., 106 , 3201932030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westwater, E., , Stankov B. B. , , Cimini D. , , Han Y. , , Shaw J. A. , , Lesht B. M. , , and Long C. N. , 2003: Radiosonde humidity soundings and microwave radiometers during Nauru99. J. Atmos. Oceanic Technol., 20 , 953971.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 17 17 3
PDF Downloads 5 5 1

A Refined Calibration Procedure of Two-Channel Sun Photometers to Measure Atmospheric Precipitable Water at Various Antarctic Sites

View More View Less
  • 1 Institute of Atmospheric Sciences and Climate (ISAC), Consiglio Nazionale delle Ricerche, Bologna, Italy
  • | 2 Institute of Acoustics “O. M. Corbino” (IDAC), Consiglio Nazionale delle Ricerche, Roma Tor Vergata, Italy
  • | 3 Institute of Space Astrophysics and Cosmic Physics, INAF, Bologna, Italy
  • | 4 Institute of Atmospheric Sciences and Climate (ISAC), Consiglio Nazionale delle Ricerche, Bologna, Italy
© Get Permissions
Restricted access

Abstract

Two-channel sun photometers can be easily employed at Antarctic sites, where harsh environmental conditions prevail, to carry out measurements of precipitable water W. In the very dry air conditions observed in the Antarctic atmosphere, water vapor does not produce strong absorption features along the sun path. Therefore, these instruments need to be calibrated using analytical forms different from the square root regime, which can be determined by simulating the output voltages measured at Antarctic sites, for the spectral near-IR curves of extraterrestrial solar irradiance, instrumental responsivity parameters, and atmospheric transmittance, relative to various measurement periods. For this purpose, average models of the Antarctic atmosphere from the ground level up to the 30-km altitude were considered for different solar zenith angles and relative humidity conditions. The ratios between the output voltages simulated in the band and window channels were plotted as a function of total water vapor content Cw, for each site and each period, to define the best-fit calibration curves, which were subsequently normalized to the field measurements to take into account the aging effects on the filter transmission characteristics. Each of the five calibration curves was found to present a slope coefficient decreasing gradually with Cw from values higher than 0.8 to about 0.6. Using these curves, measurements of W were obtained, which differ appreciably at both sea level and high-altitude sites from those given by the square root calibration curves, avoiding large overestimation errors of 10%–40% at the high-altitude sites and underestimation errors of 5%–15% at the sea level site.

Corresponding author address: Claudio Tomasi, Institute of Atmospheric Sciences and Climate (ISAC), Consiglio Nazionale delle Ricerche, via Gobetti 101, I-40129 Bologna, Italy. Email: c.tomasi@isac.cnr.it

Abstract

Two-channel sun photometers can be easily employed at Antarctic sites, where harsh environmental conditions prevail, to carry out measurements of precipitable water W. In the very dry air conditions observed in the Antarctic atmosphere, water vapor does not produce strong absorption features along the sun path. Therefore, these instruments need to be calibrated using analytical forms different from the square root regime, which can be determined by simulating the output voltages measured at Antarctic sites, for the spectral near-IR curves of extraterrestrial solar irradiance, instrumental responsivity parameters, and atmospheric transmittance, relative to various measurement periods. For this purpose, average models of the Antarctic atmosphere from the ground level up to the 30-km altitude were considered for different solar zenith angles and relative humidity conditions. The ratios between the output voltages simulated in the band and window channels were plotted as a function of total water vapor content Cw, for each site and each period, to define the best-fit calibration curves, which were subsequently normalized to the field measurements to take into account the aging effects on the filter transmission characteristics. Each of the five calibration curves was found to present a slope coefficient decreasing gradually with Cw from values higher than 0.8 to about 0.6. Using these curves, measurements of W were obtained, which differ appreciably at both sea level and high-altitude sites from those given by the square root calibration curves, avoiding large overestimation errors of 10%–40% at the high-altitude sites and underestimation errors of 5%–15% at the sea level site.

Corresponding author address: Claudio Tomasi, Institute of Atmospheric Sciences and Climate (ISAC), Consiglio Nazionale delle Ricerche, via Gobetti 101, I-40129 Bologna, Italy. Email: c.tomasi@isac.cnr.it

Save