• Cavalieri, D., , Gloersen P. , , and Campbell W. J. , 1984: Determination of sea ice parameters with the Nimbus 7 SMMR. J. Geophys. Res., 89 , 53555369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comiso, J., 2006: Arctic warming signals from satellite observations. Weather, 61 , 7076.

  • Curry, J. A., , Schramm J. , , and Ebert E. E. , 1995: On the sea ice albedo climate feedback mechanism. J. Climate, 8 , 240247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, J. A., , Schramm J. L. , , Perovich D. , , and Pinto J. O. , 2001: Application of SHEBA/FIRE data to evaluation of sea ice surface albedo parameterizations. J. Geophys. Res., 106 , 1534515356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, J. A., , Maslanik J. , , Holland G. J. , , and Pinto J. O. , 2004: Applications of aerosondes in the Arctic. Bull. Amer. Meteor. Soc., 85 , 18551861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fetterer, F., , and Untersteiner N. , 1998: Observations of melt ponds on Artic sea ice. J. Geophys. Res., 103 , 2482124835.

  • Holland, G. J., , McGeer T. , , and Youngren H. , 1992: Autonomous aerosondes for economical atmospheric soundings anywhere on the globe. Bull. Amer. Meteor. Soc., 73 , 19871998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., and Coauthors, 2001: The Aerosonde robotic aircraft: A new paradigm for environmental observations. Bull. Amer. Meteor. Soc., 82 , 889901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, J., , and Curry J. A. , 2004: Application of aerosondes to high-resolution observations of sea surface temperature over Barrow Canyon. Geophys. Res. Lett., 31 .L14312, doi:10.1029/2004GL020336.

    • Search Google Scholar
    • Export Citation
  • Inoue, J., , Kikuchi T. , , Perovich D. K. , , and Morison J. , 2005a: A drop in mid-summer shortwave radiation induced by changes ice-surface condition in the central Arctic. Geophys. Res. Lett., 32 .L13603, doi:10.1029/2005GL023170.

    • Search Google Scholar
    • Export Citation
  • Inoue, J., , Kosović B. , , and Curry J. A. , 2005b: Evolution of a storm-driven cloudy boundary layer in the Arctic. Bound.-Layer Meteor., 117 , 213230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lüthje, M., , Feltham D. L. , , Taylor P. D. , , and Worster M. G. , 2006: Modeling the summertime evolution of sea-ice melt ponds. J. Geophys. Res., 111 .C02001, doi:10.1029/2004JC002818.

    • Search Google Scholar
    • Export Citation
  • Markus, T., , Cavalieri D. J. , , Tschudi M. A. , , and Ivanoff A. , 2003: Comparison of aerial video and Landsat 7 data over ponded sea ice. Remote Sens. Environ., 86 , 458469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maslanik, J. A., 1992: Effects of weather on the retrieval of sea ice concentration and ice type from passive microwave data. Int. J. Remote Sens., 13 , 3754.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maslanik, J. A., , Curry J. A. , , Drobot S. , , and Holland G. , 2002: Observations of sea ice using a low-cost unpiloted aerial vehicle. Proc. 16th IAHR Int. Symp. on Sea Ice, Vol. 3, Dunedin, New Zealand, International Association of Hydraulic Engineering and Research, 283–287.

  • Meier, W. N., 2005: Comparison of passive microwave ice concentration algorithm retrievals with AVHRR imagery in Arctic peripheral seas. IEEE Trans. Geosci. Remote Sens., 43 , 13241337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naggar, S. El, , Garrity C. , , and Ramseier R. O. , 1998: The modelling of sea ice melt-water ponds for the high Arctic using an airborne line scan camera, and applied to the satellite Special Sensor Microwave/Imager (SSM/I). Int. J. Remote Sens., 19 , 23732394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., , Grenfell T. C. , , Light B. , , and Hobbs P. V. , 2002a: Seasonal evolution of the albedo of multiyear Arctic sea ice. J. Geophys. Res., 107 .8044, doi:10.1029/2000JC000438.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., , Tucker W. B. III, , and Ligett K. A. , 2002b: Aerial observations of the evolution of ice surface conditions during summer. J. Geophys. Res., 107 .8048, doi:10.1029/2000JC000449.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and Coauthors, 2003: A record minimum arctic sea ice extent and area in 2002. Geophys. Res. Lett., 30 .1110, doi:10.1029/2002GL016406.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., , Serreze M. C. , , Fetterer F. , , Arbetter T. , , Meier W. , , Maslanik J. , , and Knowles K. , 2004: Tracking the Arctic’s shrinking ice cover: Another extreme September minimum in 2004. Geophys. Res. Lett., 32 .L04501, doi:10.1029/2004GL021810.

    • Search Google Scholar
    • Export Citation
  • Taylor, P. D., , and Feltham D. L. , 2004: A model of melt pond evolution on sea ice. J. Geophys. Res., 109 .C12007, doi:10.1029/2004JC002361.

    • Search Google Scholar
    • Export Citation
  • Tschudi, M. A., , Curry J. A. , , and Maslanik J. A. , 2001: Airborne observations of summertime surface features and their effect on surface albedo during FIRE/SHEBA. J. Geophys. Res., 106 , 1533515344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uttal, T., and Coauthors, 2002: Surface Heat Budget of the Arctic Ocean. Bull. Amer. Meteor. Soc., 83 , 225275.

  • Yackel, J. J., , Barber D. G. , , and Hanesiak J. M. , 2000: Melt ponds on sea ice in the Canadian Archipelago. 1. Variability in morphological and radiative properties. J. Geophys. Res., 105 , 2204922060.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 76 76 6
PDF Downloads 46 46 6

Application of Aerosondes to Melt-Pond Observations over Arctic Sea Ice

View More View Less
  • 1 Institute of Observational Research for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
  • | 2 School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
  • | 3 Department of Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

Continuous observation of sea ice using a small robotic aircraft called the Aerosonde was made over the Arctic Ocean from Barrow, Alaska, on 20–21 July 2003. Over a region located 350 km off the coast of Barrow, images obtained from the aircraft were used to characterize the sea ice and to determine the fraction of melt ponds on both multiyear and first-year ice. Analysis of the data indicates that melt-pond fraction increased northward from 20% to 30% as the ice fraction increased. However, the fraction of ponded ice was over 30% in the multiyear ice zone while it was about 25% in the first-year ice zone. A comparison with a satellite microwave product showed that the ice concentration derived from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) has a negative bias of 7% due to melt ponds. These analyses demonstrate the utility of recent advances in unmanned aerial vehicle (UAV) technology for monitoring and interpreting the spatial variations in the sea ice with melt ponds.

Corresponding author address: Jun Inoue, Institute of Observational Research for Global Change, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan. Email: jun.inoue@jamstec.go.jp

Abstract

Continuous observation of sea ice using a small robotic aircraft called the Aerosonde was made over the Arctic Ocean from Barrow, Alaska, on 20–21 July 2003. Over a region located 350 km off the coast of Barrow, images obtained from the aircraft were used to characterize the sea ice and to determine the fraction of melt ponds on both multiyear and first-year ice. Analysis of the data indicates that melt-pond fraction increased northward from 20% to 30% as the ice fraction increased. However, the fraction of ponded ice was over 30% in the multiyear ice zone while it was about 25% in the first-year ice zone. A comparison with a satellite microwave product showed that the ice concentration derived from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) has a negative bias of 7% due to melt ponds. These analyses demonstrate the utility of recent advances in unmanned aerial vehicle (UAV) technology for monitoring and interpreting the spatial variations in the sea ice with melt ponds.

Corresponding author address: Jun Inoue, Institute of Observational Research for Global Change, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan. Email: jun.inoue@jamstec.go.jp

Save