• Aviation AWOS Performance Evaluation Group, 1997: Aviation AWOS performance evaluation, final report. Atmospheric Environment Service, Downsview, ON, Canada, 79 pp.

  • Beard, K. V., 1977: Terminal velocity adjustment for cloud and precipitation drops aloft. J. Atmos. Sci., 34 , 12931298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., , Zhang G. , , and Vivekanandan J. , 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41 , 674685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, F., , and Szyrmer W. , 1999: Modeling of the melting layer. Part II: Electromagnetics. J. Atmos. Sci., 56 , 35933600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujiki, N. M., , Geldart D. J. W. , , and Chylek P. , 1994: Effect of air bubbles on radar backscattering by hailstones. J. Appl. Meteor., 33 , 304308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golubev, V. S., 1986: On the problem of standard conditions for precipitation gauge installation. Proc. Int. Workshop on the Correction of Precipitation Measurements, WMOITD 104, Instruments and Observing Methods Rep. 25, Zurich, Switzerland, WMO, 57–60.

    • Search Google Scholar
    • Export Citation
  • Goodison, B. E., , Louie P. Y. T. , , and Yang D. , 1998: WMO solid precipitation measurement intercomparison. WMO Tech. Doc. 872, 211 pp.

  • Gunn, K. L. S., , and East T. W. R. , 1954: The microwave properties of precipitation particles. Quart. J. Roy. Meteor. Soc., 80 , 522545.

  • Joss, J., , and Waldvogel A. , 1967: A raindrop spectrograph with automatic analysis. Pure Appl. Geophys., 68 , 240246.

  • Khvorostyanov, V. I., , and Curry J. A. , 2002: Terminal velocities of droplets and crystals: Power laws with continuous parameters over the size spectrum. J. Atmos. Sci., 59 , 18721884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., , and Curry J. A. , 2005: Fall velocities of hydrometeors in the atmosphere: Refinements to a continuous analytical power law. J. Atmos. Sci., 62 , 43434357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kruger, A., , and Krajewski W. F. , 2002: Two-dimensional video disdrometer: A description. J. Atmos. Oceanic Technol., 19 , 602617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., , and Hobbs P. V. , 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79 , 21852197.

  • Magono, C., , and Nakamura T. , 1965: Aerodynamic study of falling snowflakes. J. Meteor. Soc. Japan, 43 , 139147.

  • Magono, C., , and Lee C. W. , 1966: Meteorological classification of natural snow crystals. J. Fac. Sci. Hokkaido Univ. Ser. 7, 2 , 321335.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., , and Palmer W. Mc K. , 1948: The distribution of raindrops with size. J. Meteor., 5 , 165166.

  • Marshall, J. S., , and Gunn K. L. S. , 1952: Measurement of snow parameters by radar. J. Meteor., 9 , 322327.

  • Matrosov, S. Y., 1992: Radar reflectivity in snowfall. IEEE Trans. Geosci. Remote Sens., 30 , 454461.

  • Maxwell-Garnett, J. C., 1904: Colors in metal glasses and in metallic films. Philos. Trans. Roy. Soc. London, A203 , 385420.

  • Mishchenko, M. I., 2000: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt., 39 , 10261031.

  • Mishchenko, M. I., , and Travis L. D. , 1998: Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented rotationally symmetric scatterers. J. Quant. Spectrosc. Radiat. Transfer, 60 , 309324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53 , 17101723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., , and Heymsfield A. J. , 2005: Refinements in the treatment of ice particle terminal velocities, highlighting aggregates. J. Atmos. Sci., 62 , 16371644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nešpor, V., , and Sevruk B. , 1999: Estimation of wind-induced error of rainfall gauge measurements using a numerical simulation. J. Atmos. Oceanic Technol., 16 , 450464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nešpor, V., , Krajewski W. F. , , and Kruger A. , 2000: Wind-induced error of raindrop size distribution measurement using a two-dimensional video disdrometer. J. Atmos. Oceanic Technol., 17 , 14831492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., , Vivekanandan J. , , Cole J. , , Myers B. , , and Masters C. , 1999: The estimation of snowfall rate using visibility. J. Appl. Meteor., 38 , 15421563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2001: Weather Support to Deicing Decision Making (WSDDM): A winter weather nowcasting system. Bull. Amer. Meteor. Soc., 82 , 579595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2005: The hotplate snow gauge. Proc. 13th Symp. on Meteorological Observation and Instrumentation, Savannah, GA, Amer. Meteor. Soc., JP1.33.

  • Ray, P. S., 1972: Broadband complex refractive indices of ice and water. Appl. Opt., 11 , 18361844.

  • Sass, B. H., 1997: A numerical forecasting system for the prediction of slippery roads. J. Appl. Meteor., 36 , 801817.

  • Sekhon, R. S., , and Srivastava R. C. , 1970: Snow size spectra and radar reflectivity. J. Atmos. Sci., 27 , 299307.

  • Sevruk, B., 1981: Methodical investigation of systematic error of Hellmann rain gauges in the summer season in Switzerland (in German). Trans. Versuchsanstalt fur Wasserbau, Hydrologie und Glaziologie, ETH-Zurich, Mitt. No. 52, 297 pp.

  • Sevruk, B., , and Hamon W. R. , 1984: International comparison of national precipitation gauges with a reference pit gauge. Instruments and Observing Methods Rep. 17, WMO, 111 pp.

  • Sheppard, B. E., 1990: Measurement of raindrop size distributions using a small Doppler radar. J. Atmos. Oceanic Technol., 7 , 255268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheppard, B. E., 2007: Sampling errors in the measurement of rainfall parameters using the Precipitation Occurrence Sensor System (POSS). J. Atmos. Oceanic Technol., 24 , 125140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheppard, B. E., , and Joe P. I. , 1994: Comparison of raindrop size distribution measurements by a Joss–Waldvogel disdrometer, a PMS 2DG spectrometer, and a POSS Doppler radar. J. Atmos. Oceanic Technol., 11 , 874887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheppard, B. E., , and Joe P. I. , 2000: Automated precipitation detection and typing in winter: A two-year study. J. Atmos. Oceanic Technol., 17 , 14931507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sletter, C. J., 1988: Reflector and Lens Antennas: Analysis and Design Using Personal Computers. Artech House, 432 pp.

  • Ulbrich, C. W., 1992: Algorithms for determination of rainfall integral parameters using reflectivity factor and mean Doppler fall speed at vertical incidence. J. Atmos. Oceanic Technol., 9 , 120128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wall, B. E., 1975: Theoretical and experimental velocities of free-falling spheres in a stratified atmosphere. Tech. Rep. TR4676, Naval Underwater Systems Center, 30 pp.

  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Yang, D., , Sevruk B. , , Elomaa E. , , Golubev V. , , Goodison B. , , and Günther T. , 1994: Wind-induced error of snow measurement: WMO intercomparison results. Proc. 23rd Int. Conf. for Alpine Meteorologie, Annalen der Meteorologie 30, Lindau, Germany, Deutscher Wetterdienst, 61–64.

  • Yang, D., , Goodison B. E. , , Metcalfe J. R. , , Golubev V. S. , , Bates R. , , Pangburn T. , , and Hanson C. L. , 1998: Accuracy of NWS 8″ standard nonrecording precipitation gauge: Results and application of WMO intercomparison. J. Atmos. Oceanic Technol., 15 , 5468.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 97 97 6
PDF Downloads 104 104 7

Performance of the Precipitation Occurrence Sensor System as a Precipitation Gauge

View More View Less
  • 1 Environment Canada, Toronto, Ontario, Canada
© Get Permissions
Restricted access

Abstract

The Precipitation Occurrence Sensor System (POSS) is a small X-band Doppler radar originally developed by the Meteorological Service of Canada for reporting the occurrence, type, and intensity of precipitation from Automated Weather Observing Stations. This study evaluates POSS as a gauge for measuring amounts of both liquid and solid precipitation. Different precipitation rate estimation algorithms are described. The effect of different solid precipitation types on the Doppler velocity spectrum is discussed. Lacking any accepted reference for high temporal resolution rates, the POSS precipitation rate measurements are integrated over time periods ranging from 6 h to one day and validated against international and Canadian reference gauges. Data from a wide range of sites across Canada and for periods of several years are used. The statistical performance of POSS is described in terms of the distribution of ratios of POSS to reference gauge amounts (catch ratios). In liquid precipitation the median of the catch ratio distribution is 82% and the interquartile range was between −12% and 19% about the median. In solid precipitation the median is 90% and the interquartile range is between −17% and 24% about the median. The underestimation in both liquid and solid precipitation is shown to be a function of precipitation rate and phase. The effects of radome wetting, raindrop splashing, wind, and the radar “brightband” effect on the estimation of precipitation rates are discussed.

Corresponding author address: B. E. Sheppard, Environment Canada, 4905 Dufferin St., Toronto ON M3H5T4, Canada. Email: brian.sheppard@ec.gc.ca

Abstract

The Precipitation Occurrence Sensor System (POSS) is a small X-band Doppler radar originally developed by the Meteorological Service of Canada for reporting the occurrence, type, and intensity of precipitation from Automated Weather Observing Stations. This study evaluates POSS as a gauge for measuring amounts of both liquid and solid precipitation. Different precipitation rate estimation algorithms are described. The effect of different solid precipitation types on the Doppler velocity spectrum is discussed. Lacking any accepted reference for high temporal resolution rates, the POSS precipitation rate measurements are integrated over time periods ranging from 6 h to one day and validated against international and Canadian reference gauges. Data from a wide range of sites across Canada and for periods of several years are used. The statistical performance of POSS is described in terms of the distribution of ratios of POSS to reference gauge amounts (catch ratios). In liquid precipitation the median of the catch ratio distribution is 82% and the interquartile range was between −12% and 19% about the median. In solid precipitation the median is 90% and the interquartile range is between −17% and 24% about the median. The underestimation in both liquid and solid precipitation is shown to be a function of precipitation rate and phase. The effects of radome wetting, raindrop splashing, wind, and the radar “brightband” effect on the estimation of precipitation rates are discussed.

Corresponding author address: B. E. Sheppard, Environment Canada, 4905 Dufferin St., Toronto ON M3H5T4, Canada. Email: brian.sheppard@ec.gc.ca

Save