• Acker, K., , Möller D. , , Wieprecht W. , , Kalaß D. , , and Auel R. , 1998: Investigations of ground-based clouds at the Mt. Brocken. Fresenius Z. Anal. Chem., 361 , 5964.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. B., , Baumgardner R. E. , , Mohnen V. A. , , and Bowser J. J. , 1999: Cloud chemistry in the eastern United States, as sampled from three high-elevation sites along the Appalachian Mountains. Atmos. Environ., 33 , 51055114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bator, A., , and Collett J. L. Jr., 1997: Cloud chemistry varies with drop size. J. Geophys. Res., 102 , (D23). 2807128078.

  • Baumgartner, A., 1958: Nebel und Nebelniederschlag als Standortfaktoren am Großen Falkenstein (Bayerischer Wald). Forstwissenschaftliches Centralblatt, 77 , 257320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berner, A., 1984: Design principles of the AERAS low pressure impactor. Aerosols: Science, Technology, and Industrial Applications of Airborne Particles, B. Y. H. Liu, D. Y. H. Pui, and H. J. Fissan, Eds., Elsevier, 139–142.

    • Search Google Scholar
    • Export Citation
  • Collett J. L. Jr., , , Oberholzer B. , , and Staehelin J. , 1993: Cloud chemistry at Mt. Rigi, Switzerland: Dependence on drop size and relationship to precipitation chemistry. Atmos. Environ., 27A , 3342.

    • Search Google Scholar
    • Export Citation
  • Collett J. L. Jr., , , Iovinelli R. , , and Demoz B. , 1995: A three-stage cloud impactor for size-resolved measurement of cloud drop chemistry. Atmos. Environ., 29 , 11451154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daube, B. C., , Flagan R. C. , , and Hoffmann M. R. , 1987: Active Cloudwater Collector. U.S. Patent 4697462.

  • Davidson, C. I., , and Friedlander S. K. , 1978: Filtration model for aerosol dry deposition-Application to trace-metal deposition from atmosphere. J. Geophys. Res., 83 , 23432352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demoz, B. B., , Collett J. L. , , and Daube B. C. , 1996: On the Caltech Active Strand Cloudwater Collectors. Atmos. Res., 41 , 4762.

  • Friedlander, S. K., 1977: Smoke, Dust, and Haze: Fundamentals of Aerosol Behavior. Wiley, 317 pp.

  • Fuzzi, S., and Coauthors, 1996: The NEVALPA project: A regional network for fog chemical climatology over the Po Valley basin. Atmos. Environ., 30 , 201213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grunow, J., 1955: Der Nebelniederschlag im Bergwald. Forstwissenschaftliches Centralblatt, 74 , 2136.

  • Hoag, K. J., , Collett J. L. , , and Pandis S. N. , 1999: The influence of drop size-dependent fog chemistry on aerosol processing by San Joaquin Valley fogs. Atmos. Environ., 33 , 48174832.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemm, O., , and Wrzesinsky T. , 2007: Fog deposition fluxes of water and ions to a mountainous site in central Europe. Tellus, 59B , 705714.

    • Search Google Scholar
    • Export Citation
  • Matzner, E., and Ed., 2004: Temperate forest ecosystem functioning in a changing environment—Watershed studies in Germany. Ecol. Stud., 172 .

    • Search Google Scholar
    • Export Citation
  • Mertes, S., , Schwarzenböck A. , , Laj P. , , Wobrock W. , , Pichon J-M. , , Orsi G. , , and Heintzenberg J. , 2001: Changes of cloud microphysical properties during the transition from supercooled to mixed-phase conditions during CIME. Atmos. Res., 58 , 267294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pui, D. Y. H., , Romaynovas F. , , and Liu B. Y. H. , 1987: Experimental study of particle deposition in bends of circular cross-section. Aerosol Sci. Technol., 7 , 301315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schell, D., and Coauthors, 1997: The size-dependent chemical composition of cloud droplets. Atmos. Environ., 16 , 25612576.

  • Schwarzenböck, A., , and Heintzenberg J. , 2000: Cut size minimization and cloud element break-up in a ground-based CVI. J. Aerosol Sci., 31 , 477489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwarzenböck, A., , Heintzenberg J. , , and Mertes S. , 2000: Incorporation of aerosol particles between 25 and 850 nm into cloud elements: Measurements with a new complementary sampling system. Atmos. Res., 52 , 241260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwendiman, L. C., , Stegen G. E. , , and Glissmeyer J. A. , 1975: Methods and aids for assessing particle losses in sampling lines. Rep. BNWL-SA-5138, Battelle Pacific Northwest Laboratory, Richland, WA, 23 pp.

  • Seinfeld, J. H., , and Pandis S. N. , 1998: Atmospheric Chemistry and Physics. Wiley-Interscience, 1360 pp.

  • Straub, D. J., , and Collett J. L. , 2001: Numerical and experimental performance evaluation of the 3-stage FROSTY Supercooled Cloud Collector. Aerosol Sci. Technol., 34 , 247261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wieprecht, W., , Acker K. , , Mertes S. , , Collett J. , , Jaeschke W. , , Brüggemann X. , , Möller D. , , and Herrmann H. , 2005: Cloud physics and cloud water sampler comparison during FEBUKO. Atmos. Environ., 39 , 42674277.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 39 39 2
PDF Downloads 25 25 2

A Collector for Fog Water and Interstitial Aerosol

View More View Less
  • 1 Bayreuther Institut für Terrestrische Ökosystemforschung (BITÖK), Universität Bayreuth, Bayreuth, Germany
© Get Permissions
Restricted access

Abstract

An active heatable cloud water collector for ground sampling is presented. The collector can be operated unattended for approximately one week, even in harsh winter conditions. The collection strands are Teflon tubes. A preset cycle of 15-min sampling followed by 250 s of mild heating using wires inserted into the tubes is used. The lower cutoff diameter for fog droplets is 7.3 μm, and its overall collection efficiency is 79% for the liquid water content of fogs at the experimental site in central Europe. It performed reliably during a 2-yr experiment. The collected fog water interacts exclusively with inert materials such as Teflon and Perspex so the collector is well suited for trace analyses of fog water. The collector can be upgraded with an interstitial aerosol collection unit, at the expense of unattended operation. The lower cutoff diameter of the fog water collection strands is 8.1 μm when the interstitial aerosol module is installed. The module efficiently collects particles with diameters <3.5 μm. For these particles, size-segregated samples in four size classes at diameters down to 0.06 μm are collected with a Berner-type impactor. The collector was successfully employed in a mountainous region of central Europe. Over 400 samples were collected within 2 yr. With the collection unit for interstitial aerosol added, 31 samples were collected in a 2-month period.

* Current affiliation: Institut für Landschaftsökologie (ILÖK), Westfälische Wilhelms-Universität Münster, Münster, Germany

+ Current affiliation: Lehrstuhl für Chemische Verfahrenstechnik, Universität Bayreuth, Bayreuth, Germany

# Current affiliation: Ocean Research Institute, The University of Tokyo, Tokyo, Japan

Corresponding author address: Otto Klemm, Institut für Landschaftsökologie (ILÖK), Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 26, 48149 Münster, Germany. Email: otto.klemm@uni-muenster.de

Abstract

An active heatable cloud water collector for ground sampling is presented. The collector can be operated unattended for approximately one week, even in harsh winter conditions. The collection strands are Teflon tubes. A preset cycle of 15-min sampling followed by 250 s of mild heating using wires inserted into the tubes is used. The lower cutoff diameter for fog droplets is 7.3 μm, and its overall collection efficiency is 79% for the liquid water content of fogs at the experimental site in central Europe. It performed reliably during a 2-yr experiment. The collected fog water interacts exclusively with inert materials such as Teflon and Perspex so the collector is well suited for trace analyses of fog water. The collector can be upgraded with an interstitial aerosol collection unit, at the expense of unattended operation. The lower cutoff diameter of the fog water collection strands is 8.1 μm when the interstitial aerosol module is installed. The module efficiently collects particles with diameters <3.5 μm. For these particles, size-segregated samples in four size classes at diameters down to 0.06 μm are collected with a Berner-type impactor. The collector was successfully employed in a mountainous region of central Europe. Over 400 samples were collected within 2 yr. With the collection unit for interstitial aerosol added, 31 samples were collected in a 2-month period.

* Current affiliation: Institut für Landschaftsökologie (ILÖK), Westfälische Wilhelms-Universität Münster, Münster, Germany

+ Current affiliation: Lehrstuhl für Chemische Verfahrenstechnik, Universität Bayreuth, Bayreuth, Germany

# Current affiliation: Ocean Research Institute, The University of Tokyo, Tokyo, Japan

Corresponding author address: Otto Klemm, Institut für Landschaftsökologie (ILÖK), Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 26, 48149 Münster, Germany. Email: otto.klemm@uni-muenster.de

Save