• Agrawal, Y., , Terray E. , , Donelan M. , , Hwang P. , , Williams A. J. III, , Drennan W. M. , , Kahma K. K. , , and Kitaigorodskii S. A. , 1992: Enhanced dissipation of kinetic energy beneath surface waves. Nature, 359 , 219220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anis, A., , and Moum J. N. , 1995: Surface wave–turbulence interactions, scaling ɛ(z) near the sea surface. J. Phys. Oceanogr., 25 , 20252045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asher, W. E., , Jessup A. T. , , and Atmane M. A. , 2004: Oceanic application of the active controlled flux technique for measuring air-sea transfer velocities of heat and gases. J. Geophys. Res., 109 .C08S12, doi:10.1029/2003JC001862.

    • Search Google Scholar
    • Export Citation
  • Atmane, M. A., , Asher W. E. , , and Jessup A. T. , 2004: On the use of the active infrared technique to infer heat and gas transfer velocities at the air-water free surface. J. Geophys. Res., 109 .C08S14, doi:10.1029/2003JC001805.

    • Search Google Scholar
    • Export Citation
  • Barron, J. L., , Fleet D. J. , , and Beauchemin S. , 1994: Performance of optical flow techniques. Int. J. Comput. Vision, 12 , 4377.

  • Castro, S. L., , Wick G. A. , , and Emery W. J. , 2003: Further refinements to models for the bulk-skin sea surface temperature difference. J. Geophys. Res., 108 .3377, doi:10.1029/2002JC001641.

    • Search Google Scholar
    • Export Citation
  • Craik, A. D. D., 1977: The generation of Langmuir circulations by an instability mechanism. J. Fluid Mech., 81 , 209223.

  • Danckwerts, P. V., 1951: Significance of liquid-film coefficients in gas absorption. Ind. Eng. Chem., 43 , 14601467.

  • Donlon, C. J., , and Robinson I. S. , 1997: Observations of the oceanic thermal skin in the Atlantic Ocean. J. Geophys. Res., 102 , 1858518606.

  • Donlon, C. J., , Eifler W. , , and Nightindale T. J. , 1999: The thermal skin temperature of the ocean at high wind speed. Proc. IGARSS ’99 Geoscience and Remote Sensing Symp., Hamburg, Germany, IEEE, 8–10.

    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., , Minnett P. , , Gentemann C. , , Nightingale T. J. , , Barton I. J. , , Ward B. , , and Murray J. , 2002: Toward operational validation of satellite sea surface skin temperature measurements for climate research. J. Climate, 15 , 353369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ewing, G., , and McAlister E. D. , 1960: On the thermal boundary layer of the ocean. Science, 131 , 13741376.

  • Fairall, C. W., , Bradley E. F. , , Rogers D. P. , , Edson J. B. , , and Young G. S. , 1996: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res., 101 , 37473764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garbe, C. S., , Schimpf U. , , and Jähne B. , 2004: A surface renewal model to analyze infrared image sequences of the ocean surface for the study of air-sea heat and gas exchange. J. Geophys. Res., 109 .C08S15, doi:10.1029/2003JC001802.

    • Search Google Scholar
    • Export Citation
  • Gui, L., , and Merzkirch W. , 2000: A comparative study of the MQD method and several correlation-based PIV evaluation algorithms. Exp. Fluids, 28 , 3644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasse, L., 1990: On the mechanism of gas exchange at the air-sea interface. Tellus, 42B , 250253.

  • Haußecker, H., , Reinelt S. , , and Jähne B. , 1995: Heat as a proxy tracer for gas exchange measurements in the field: Principles and technical realization. Proc. Third Int. Symp. on Air-Water Gas Transfer, Heidelberg, Germany, Image Processing, 405–413.

    • Search Google Scholar
    • Export Citation
  • Haußecker, H., , Schimpf U. , , Garbe C. S. , , and Jähne B. , 2001: Physics from IR image sequences: Quantitative analysis of transport models and parameters of air-sea gas transfer. Gas Transfer at Water Surfaces, Geophys. Monogr., Vol. 127, Amer. Geophys. Union, 103–108.

    • Search Google Scholar
    • Export Citation
  • Higbie, R., 1935: The rate of absorption of a pure gas into a still liquid during short periods of exposure. Trans. Amer. Inst. Chem. Eng., 31 , 365389.

    • Search Google Scholar
    • Export Citation
  • Hill, R. W., 1972: Laboratory measurement of heat transfer and thermal structure near an air-water interface. J. Phys. Oceanogr., 2 , 190198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jähne, B., , and Haußecker H. , 1998: Air-water gas exchange. Annu. Rev. Fluid Mech., 30 , 443468.

  • Jähne, B., , Munnich K. O. , , Bosinger R. , , Dutzi A. , , Huber W. , , and Libner W. , 1987: On the parameters influencing air-water gas exchange. J. Geophys. Res., 92 , 19371949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jessup, A. T., , and Phadnis K. R. , 2005: Measurement of the geometric and kinematic properties of microscale breaking waves from infrared imagery using a PIV algorithm. Meas. Sci. Technol., 16 , 19611969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jessup, A. T., , Zappa C. J. , , and Yeh J. H. , 1997a: Defining and quantifying microscale breaking with infrared imagery. J. Geophys. Res., 102 , 2314523153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jessup, A. T., , Zappa C. J. , , Loewen M. R. , , and Hesany V. , 1997b: Infrared remote sensing of breaking waves. Nature, 385 , 5255.

  • Leibovich, S., 1977: On the evolution of the system of wind drift current and Langmuir circulations in the ocean. Part 1: Theory and average current. J. Fluid Mech., 79 , 715743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leibovich, S., 1983: The form and dynamics of Langmuir circulations. Annu. Rev. Fluid Mech., 15 , 391427.

  • McAlister, E. D., 1964: Infrared-optical techniques applied to oceanography I. Measurement of total heat flow from the sea surface. Appl. Opt., 5 , 609612.

    • Search Google Scholar
    • Export Citation
  • McAlister, E. D., , and McLeish W. A. , 1970: Radiometric system for airborne measurement of the total heat flow from the sea. Appl. Opt., 9 , 26072705.

    • Search Google Scholar
    • Export Citation
  • Melville, W. K., 1994: Energy dissipation by breaking waves. J. Phys. Oceanogr., 24 , 20412049.

  • Melville, W. K., 1996: The role of surface-wave breaking in air–sea interaction. Annu. Rev. Fluid. Mech., 28 , 279321.

  • Melville, W. K., , Shear R. , , and Veron F. , 1998: Laboratory measurements of the generation and evolution of Langmuir circulations. J. Fluid Mech., 364 , 3158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raffel, M., , Willert C. E. , , and Kompenhans J. , 1998: Particle Image Velocimetry:. A Practical Guide. Springer-Verlag, 253 pp.

  • Saunders, P. M., 1967: The temperature at the ocean-air interface. J. Atmos. Sci., 24 , 269273.

  • Schimpf, U., , Garbe C. , , and Jähne B. , 2004: Investigation of transport processes across the sea surface microlayer by infrared imagery. J. Geophys. Res., 109 .C08S13, doi:10.1029/2003JC001803.

    • Search Google Scholar
    • Export Citation
  • Schlüssel, P., , Emery W. J. , , Grassl H. , , and Mammen T. , 1990: On the bulk-skin temperature difference and its impact on satellite remote sensing of the sea surface temperature. J. Geophys. Res., 95 , 1334113356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soloviev, A. V., , and Schlüssel P. , 1994: Parameterization of the cool skin of the ocean and of the air-ocean gas transfer on the basis of modeling surface renewal. J. Phys. Oceanogr., 24 , 13391346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terray, E., , Donelan M. , , Agrawal Y. , , Drennan W. , , Kahma K. , , Williams A. , , Hwang P. , , and Kitaigorodskii S. , 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26 , 792807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, M., , Misra S. , , Kambhamettu C. , , and Kirby J. T. , 2005: A robust motion estimation algorithm for PIV. Meas. Sci. Technol., 16 , 865877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, S. A., 1993: Energy loss by breaking waves. J. Phys. Oceanogr., 23 , 24982502.

  • Turney, D. E., , Smith W. C. , , and Banerjee S. , 2005: A measure of near-surface fluid motions that predicts air-water gas transfer in a wide range of conditions. Geophys. Res. Lett., 32 .L04607, doi:10.1029/2004GL021671.

    • Search Google Scholar
    • Export Citation
  • Veron, F., , and Melville W. K. , 1999a: Pulse-to-pulse coherent Doppler measurements of waves and turbulence. J. Atmos. Oceanic Technol., 16 , 15801597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veron, F., , and Melville W. K. , 1999b: Laboratory studies of mixing and Langmuir circulations. Proc. Fourth Int. Symp. on the Wind-Driven Air-Sea Interface, Sydney, Australia, Australian Defense Force Academy, 265–272.

  • Veron, F., , and Melville W. K. , 2001: Experiments on the stability and transition of wind-driven water surfaces. J. Fluid Mech., 446 , 2565.

  • Webb, E. K., , Pearman G. I. , , and Leuning R. , 1980: Measurements for density effects due to heat and water vapor transfer. Quart. J. Roy. Meteor. Soc., 106 , 85106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wick, G. A., , Emery W. J. , , and Schlüssel P. A. , 1992: A comprehensive comparison between satellite-measured skin and multichannel sea surface temperature. J. Geophys. Res., 97 , 55695595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wick, G. A., , Emery W. J. , , Kantha L. H. , , and Schlüssel P. , 1996: The behavior of the bulk–skin sea surface temperature difference under varying wind speed and heat flux. J. Phys. Oceanogr., 26 , 19691988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wick, G. A., , Ohlmann J. C. , , Fairall C. W. , , and Jessup A. T. , 2005: Improved oceanic cool-skin corrections using a refined solar penetration model. J. Phys. Oceanogr., 35 , 19861996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zappa, C. J., , and Jessup A. T. , 2005: High-resolution airborne infrared measurements of ocean skin temperature. IEEE Trans. Geosci. Remote Sens. Lett., 2 , 146150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zappa, C. J., , Asher W. E. , , and Jessup A. T. , 2001: Microscale wave breaking and air-water gas transfer. J. Geophys. Res., 106 , 93859391.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 42 42 5
PDF Downloads 45 45 12

Infrared Techniques for Measuring Ocean Surface Processes

View More View Less
  • 1 College of Marine and Earth Studies, University of Delaware, Newark, Delaware
  • | 2 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
© Get Permissions
Restricted access

Abstract

Ocean surface processes, and air–sea interaction in general, have recently received increased attention because it is now accepted that small-scale surface phenomena can play a crucial role in the air–sea fluxes of heat, mass, and momentum, with important implications for weather and climate studies. Yet, despite good progress in recent years, the air–sea interface and the adjacent atmospheric and marine boundary layers have proven to be difficult to measure in all but the most benign conditions. This has led to the need for novel measurement techniques to quantify processes of air–sea interaction. Here the authors present infrared techniques aimed at simultaneously studying multiple aspects of the air–sea interface and air–sea fluxes. The instrumentation was tested and deployed during several field experiments from Research Platform (R/P) FLIP and Scripps pier. It is shown that these techniques permit the detailed study of the ocean surface temperature and velocity fields. In particular, it is shown that cross-correlation techniques typically used in particle image velocimetry can be used to infer the ocean surface velocity field from passive infrared temperature images. In addition, when conditions make cross-correlation techniques less effective, an active infrared marking and tracking technique [which will be called thermal marker velocimetry (TMV)] can be successfully used to measure the surface velocity and its spatial and temporal derivatives. The thermal marker velocimetry technique also provides estimates of the heat transfer velocity and surface renewal frequencies. Finally, infrared altimetry is used to complement the temperature and kinematic data obtained from passive imagery and active marking. The data obtained during the testing and deployment of this instrumentation provide a novel description of the kinematics of the surface of the ocean.

Corresponding author address: Fabrice Veron, 112C Robinson Hall, University of Delaware, College of Marine and Earth Studies, Newark, DE 19716. Email: fveron@udel.edu

Abstract

Ocean surface processes, and air–sea interaction in general, have recently received increased attention because it is now accepted that small-scale surface phenomena can play a crucial role in the air–sea fluxes of heat, mass, and momentum, with important implications for weather and climate studies. Yet, despite good progress in recent years, the air–sea interface and the adjacent atmospheric and marine boundary layers have proven to be difficult to measure in all but the most benign conditions. This has led to the need for novel measurement techniques to quantify processes of air–sea interaction. Here the authors present infrared techniques aimed at simultaneously studying multiple aspects of the air–sea interface and air–sea fluxes. The instrumentation was tested and deployed during several field experiments from Research Platform (R/P) FLIP and Scripps pier. It is shown that these techniques permit the detailed study of the ocean surface temperature and velocity fields. In particular, it is shown that cross-correlation techniques typically used in particle image velocimetry can be used to infer the ocean surface velocity field from passive infrared temperature images. In addition, when conditions make cross-correlation techniques less effective, an active infrared marking and tracking technique [which will be called thermal marker velocimetry (TMV)] can be successfully used to measure the surface velocity and its spatial and temporal derivatives. The thermal marker velocimetry technique also provides estimates of the heat transfer velocity and surface renewal frequencies. Finally, infrared altimetry is used to complement the temperature and kinematic data obtained from passive imagery and active marking. The data obtained during the testing and deployment of this instrumentation provide a novel description of the kinematics of the surface of the ocean.

Corresponding author address: Fabrice Veron, 112C Robinson Hall, University of Delaware, College of Marine and Earth Studies, Newark, DE 19716. Email: fveron@udel.edu

Save