• Artegiani, A., , Bregant D. , , Paschini E. , , Pinardi N. , , Raicich F. , , and Russo A. , 1997: The Adriatic Sea general circulation. Part I: Air–sea interactions and water mass structure. J. Phys. Oceanogr., 27 , 14921514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ayoub, N., , Le Traon P-Y. , , and De Mey P. , 1998: A description of the Mediterranean surface variable circulation from combined ERS-1 and Topex/Poseidon altimetric data. J. Mar. Syst., 18 , 340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Béthoux, J. P., , and Gentili B. , 1999: Functioning of the Mediterranean Sea: Past and present changes related to freshwater input and climate changes. J. Mar. Syst., 20 , 3347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Béthoux, J. P., , Gentili B. , , and Tailliez D. , 1990: Warming trend in the western Mediterranean deep water. Nature, 347 , 660662.

  • Béthoux, J. P., , Gentili B. , , and Tailliez D. , 1998: Warming and freshwater budget change in the Mediterranean since the 1940s, their possible relation to the greenhouse effect. Geophys. Res. Lett., 25 , 10231026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrère, L., 2004: Etude et modélisation de la réponse hautes fréquences de l’océan global aux forçages météorologiques. Ph.D. thesis, Université Toulouse III, Paul Sabatier, 313 pp.

  • Carrère, L., , and Lyard F. , 2003: Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing—Comparisons with observations. Geophys. Res. Lett., 30 .1275, doi:10.1029/2002GL016473.

    • Search Google Scholar
    • Export Citation
  • Cartwright, D. E., , and Tayler R. J. , 1971: New computations of the tide-generating potential. Geophys. J. Roy. Astron. Soc., 23 , 4574.

    • Search Google Scholar
    • Export Citation
  • Cartwright, D. E., , and Edden A. C. , 1973: Corrected tables of tidal harmonics. Geophys. J. Roy. Astron. Soc., 33 , 253264.

  • Cazenave, A., , Cabanes C. , , Dominh K. , , and Mangiarotti S. , 2001: Recent sea level change in the Mediterranean Sea revealed by Topex/Poseidon satellite altimetry. Geophys. Res. Lett., 28 , 16071710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., , Ries J. C. , , Haines B. J. , , Fu L-L. , , and Callahan P. , 2001: Satellite altimetry. Satellite Altimetry and Earth Science, L.-L. Fu and A. Cazenave, Eds., Academic Press, 1–131.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., , Le Traon P. Y. , , and Gauzelin P. , 1999: Response of the Black Sea mean level to atmospheric pressure and wind forcing. J. Mar. Syst., 22 , 311327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eanes, R. J., , and Bettadpur S. V. , 1995: The CSR 3.0 global ocean tide model. Tech. Memo. CSR-TM-95-06, Center for Space Research, University of Texas at Austin.

  • Fenoglio-Marc, L., 2002: Long-term sea level change in the Mediterranean Sea from multi-satellite altimetry and tide gauges. Phys. Chem. Earth, 27 , 14191431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, L. L., , and Pihos G. , 1994: Determining the response of sea level to atmospheric pressure forcing using TOPEX/POSEIDON data. J. Geophys. Res., 99 , 2463324642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, C., 1983: Variable sea level and strait flow in the Mediterranean: A theoretical study of the response to meteorological forcing. Oceanol. Acta, 6 , 7987.

    • Search Google Scholar
    • Export Citation
  • Gaspar, P., , Ogor F. , , Le Traon P-Y. , , and Zanife O-Z. , 1994: Estimating the sea state bias of the Topex and Poseidon altimeters from crossover differences. J. Geophys. Res., 99 , C12. 2498124994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haines, B. J., , and Bar-Sever Y. E. , 1998: Monitoring the TOPEX microwave radiometer with GPS: Stability of columnar water vapor measurements. Geophys. Res. Lett., 25 , 35633566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hellereman, S., , and Rosenstein M. , 1983: Normal wind stress over the World Ocean with error estimates. J. Phys. Oceanogr., 13 , 10931105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirose, N., , Fukumori I. , , and Zlotnicki V. , 2001: Modeling the high-frequency barotropic response of the ocean to atmospheric disturbances: Sensitivity to forcing, topography, and friction. J. Geophys. Res., 106 , C12. 3098730995.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larnicol, G., , Ayoub N. , , and Le Traon P-Y. , 2002: Major changes in Mediterranean Sea level variability from 7 years of Topex/Poseidon and ERS-1/2 data. J. Mar. Syst., 33–34 , 6389.

    • Search Google Scholar
    • Export Citation
  • Lefèvre, F., 2000: Modélisation des marées océaniques à l’échelle globale: Assimilation de données in situ et altimétriques. Ph.D. thesis, Université Toulouse III, Paul Sabatier, 280 pp.

  • Le Provost, C., 2001: Ocean tides. Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications, L.-L. Fu and A. Cazenave, Eds., International Geophysical Series, Vol. 69, Academic Press, 267–303.

    • Search Google Scholar
    • Export Citation
  • Lynch, D. R., , and Gray W. G. , 1979: A wave equation model for finite element tidal computations. Comput. Fluids, 7 , 207228.

  • Mangiarotti, S., 2003: Les variations basse fréquence du niveau de la mer au cours de la deuxième moitié du XXème siècle par altimétrie spatiale et marégraphie. Ph.D. thesis, Université Toulouse III, Paul Sabatier, 178 pp.

  • Mitchum, G. T., 2000: An improved calibration of satellite altimetric heights using tide gauge sea levels with adjustment for land motion. Mar. Geod., 23 , 145166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinardi, N., , and Masetti E. , 2000: Variability of the large scale general circulation of the Mediterranean Sea from observations and modelling: A review. Palaeogeogr. Palaeoclimatol. Palaeoecol., 158 , 153174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ross, T., , Garrett C. , , and Le Traon P-Y. , 2000: Western Mediterranean sea-level rise: Changing exchange flow through the Strait of Gibraltar. Geophys. Res. Lett., 27 , 29492952.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapley, B. D., and Coauthors, 1996: The joint gravity model 3. J. Geophys. Res., 101 , B12. 2802928049.

  • Tsimplis, M. N., , and Vlahakis G. N. , 1994: Meteorological forcing and sea-level variability in the Aegean Sea. J. Geophys. Res., 99 , C5. 98799890.

  • Tsimplis, M. N., , and Spencer N. E. , 1997: Collection and analysis of monthly mean sea level data in the Mediterranean and the Black Sea. J. Coastal Res., 13 , 534544.

    • Search Google Scholar
    • Export Citation
  • Tsimplis, M. N., , and Baker T. F. , 2000: Sea level drop in the Mediterranean Sea: An indicator of deep water salinity and temperature changes? Geophys. Res. Lett., 27 , 17311734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsimplis, M. N., , Josey S. A. , , Rixen M. , , and Stanev E. V. , 2004: On the forcing of sea level in the Black Sea. J. Geophys. Res., 109 .C08015, doi:10.1029/2003JC002185.

    • Search Google Scholar
    • Export Citation
  • Wahr, J. M., 1985: Deformation induced by polar motion. J. Geophys. Res., 90 , B11. 93639368.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 14 14 2
PDF Downloads 11 11 0

Surface Pressure and Wind Stress Effects on Sea Level Change Estimations from TOPEX/Poseidon Satellite Altimetry in the Mediterranean Sea

View More View Less
  • 1 POC-LEGOS-CNRS, UMR5566/CNRS-IRD-UPS-CNES, Toulouse, France
© Get Permissions
Restricted access

Abstract

Using the classical inverse barometer (IB) correction and the Modèle d’Onde de Gravité à 2 Dimensions (MOG2D) barotropic model in the Mediterranean Sea during the 1993–2002 period, it is shown that surface pressure and wind stress forcing significantly contribute to sea level elevation variations observed with Ocean Topography Experiment (TOPEX)/Poseidon (T/P) satellite altimetry. The barotropic model allows the authors to estimate the high-frequency atmospheric ocean response that is aliased into the altimetric sea level. Applying the model barotropic correction allows them to reduce the T/P standard deviation by a mean of 21% over the whole basin, whereas the classical IB correction reduces the standard deviation by only 16%. The trend in sea level rise is also strongly affected due to the aliasing effect, especially when short periods are considered. On a 3-yr period, the correction associated with either of these two models can reach 10–12 mm yr−1. Applying the barotropic model correction rather than the IB correction can also affect the linear trend estimations by more than 6–7 mm yr−1. For a 9-yr window, the IB/MOG2D correction can contribute 1.8–2 mm yr−1 in magnitude. The local corrected linear trends confirm the previous analysis pattern but on a local scale, with the linear trend magnitudes reaching values between −24 and +29 mm yr−1.

Corresponding author address: S. Mangiarotti, POC-LEGOS-CNRS, UMR5566/CNRS-IRD-UPS-CNES, 18, Avenue Edouard Belin, 31401 Toulouse, France. Email: mangiaro@notos.cst.cnes.fr

Abstract

Using the classical inverse barometer (IB) correction and the Modèle d’Onde de Gravité à 2 Dimensions (MOG2D) barotropic model in the Mediterranean Sea during the 1993–2002 period, it is shown that surface pressure and wind stress forcing significantly contribute to sea level elevation variations observed with Ocean Topography Experiment (TOPEX)/Poseidon (T/P) satellite altimetry. The barotropic model allows the authors to estimate the high-frequency atmospheric ocean response that is aliased into the altimetric sea level. Applying the model barotropic correction allows them to reduce the T/P standard deviation by a mean of 21% over the whole basin, whereas the classical IB correction reduces the standard deviation by only 16%. The trend in sea level rise is also strongly affected due to the aliasing effect, especially when short periods are considered. On a 3-yr period, the correction associated with either of these two models can reach 10–12 mm yr−1. Applying the barotropic model correction rather than the IB correction can also affect the linear trend estimations by more than 6–7 mm yr−1. For a 9-yr window, the IB/MOG2D correction can contribute 1.8–2 mm yr−1 in magnitude. The local corrected linear trends confirm the previous analysis pattern but on a local scale, with the linear trend magnitudes reaching values between −24 and +29 mm yr−1.

Corresponding author address: S. Mangiarotti, POC-LEGOS-CNRS, UMR5566/CNRS-IRD-UPS-CNES, 18, Avenue Edouard Belin, 31401 Toulouse, France. Email: mangiaro@notos.cst.cnes.fr

Save