A New Technique to Categorize and Retrieve the Microphysical Properties of Ice Particles above the Melting Layer Using Radar Dual-Polarization Spectral Analysis

A. L. J. Spek Delft University of Technology, Delft, Netherlands

Search for other papers by A. L. J. Spek in
Current site
Google Scholar
PubMed
Close
,
C. M. H. Unal Delft University of Technology, Delft, Netherlands

Search for other papers by C. M. H. Unal in
Current site
Google Scholar
PubMed
Close
,
D. N. Moisseev Colorado State University, Fort Collins, Colorado

Search for other papers by D. N. Moisseev in
Current site
Google Scholar
PubMed
Close
,
H. W. J. Russchenberg Delft University of Technology, Delft, Netherlands

Search for other papers by H. W. J. Russchenberg in
Current site
Google Scholar
PubMed
Close
,
V. Chandrasekar Colorado State University, Fort Collins, Colorado

Search for other papers by V. Chandrasekar in
Current site
Google Scholar
PubMed
Close
, and
Y. Dufournet Delft University of Technology, Delft, Netherlands

Search for other papers by Y. Dufournet in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, a dual-polarization spectral analysis for retrieval of microphysical properties of ice hydrometeors is developed. It is shown that, by using simultaneous Doppler polarimetric observations taken at a 45° elevation angle, it is possible to discriminate between different types of ice particles. Particle size distribution parameters for maximally two dominating types of ice particles (aggregates and plates) observed above the melting layer are retrieved. Prior to the retrieval algorithm, a selection of possible types of ice particles based on environmental conditions is carried out. The retrieval procedure is based on a least squares optimization that simultaneously minimizes fit residuals in a Doppler power spectrum and spectral differential reflectivity. The proposed method is illustrated on transportable atmospheric radar (TARA) observations of stratiform rain collected on 19 September 2001 at Cabauw, Netherlands.

Corresponding author address: Christine Unal, IRCTR, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, 2628 CD Delft, Netherlands. Email: c.m.h.unal@irctr.tudelft.nl

Abstract

In this study, a dual-polarization spectral analysis for retrieval of microphysical properties of ice hydrometeors is developed. It is shown that, by using simultaneous Doppler polarimetric observations taken at a 45° elevation angle, it is possible to discriminate between different types of ice particles. Particle size distribution parameters for maximally two dominating types of ice particles (aggregates and plates) observed above the melting layer are retrieved. Prior to the retrieval algorithm, a selection of possible types of ice particles based on environmental conditions is carried out. The retrieval procedure is based on a least squares optimization that simultaneously minimizes fit residuals in a Doppler power spectrum and spectral differential reflectivity. The proposed method is illustrated on transportable atmospheric radar (TARA) observations of stratiform rain collected on 19 September 2001 at Cabauw, Netherlands.

Corresponding author address: Christine Unal, IRCTR, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, 2628 CD Delft, Netherlands. Email: c.m.h.unal@irctr.tudelft.nl

Save
  • Auer, A. H., and Veal D. L. , 1970: The dimension of ice crystals in natural clouds. J. Atmos. Sci., 27 , 919926.

  • Bringi, V. N., and Chandrasekar V. , 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., Bringi V. N. , and Brockwell P. J. , 1986: Statistical properties of dual-polarized radar signals. Preprints, 23rd Conf. on Radar Meteorology, Snowmass, CO, Amer. Meteor. Soc., 193–196.

  • Doviak, R. J., and Zrnic D. S. , 1993: Doppler Radar and Weather Observations. Academic Press, 562 pp.

  • El-Magd, A., Chandrasekar V. , Bringi V. N. , and Strapp W. , 2000: Multiparameter radar and in situ aircraft observation of graupel and hail. IEEE Trans. Geosci. Remote Sens., 38 , 570578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, F., and Szyrmer W. , 1999: Modeling of the melting layer. Part II: Electromagnetic. J. Atmos. Sci., 56 , 35933600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukuta, N., and Takahashi T. , 1999: The growth of atmospheric ice crystals: A summary of findings in vertical supercooled cloud tunnel studies. J. Atmos. Sci., 56 , 19631979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heijnen, S. H., Lighthart L. P. , and Russchenberg H. W. J. , 2000: First measurements with TARA; An S-band transportable atmospheric radar. Phys. Chem. Earth, 25 , 995998.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1978: The characteristics of graupel particles in northeastern Colorado cumulus congestus clouds. J. Atmos. Sci., 35 , 284295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and Kajikawa M. , 1987: An improved approach to calculating terminal velocities of plate-like crystals and graupel. J. Atmos. Sci., 44 , 10881099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V. I., and Curry J. A. , 2002: Terminal velocities of droplets and crystals: Power laws with continuous parameters over the size spectrum. J. Atmos. Sci., 59 , 18721884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langleben, M. P., 1954: The terminal velocity of snowflakes. Quart. J. Roy. Meteor. Soc., 80 , 174181.

  • Liao, L., Meneghini R. , Iguchi T. , and Detwiler A. , 2005: Use of dual-wavelength radar for snow parameter estimates. J. Atmos. Oceanic Technol., 22 , 14941506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and Hobbs P. V. , 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79 , 21852197.

  • Magono, C., and Lee C. W. , 1966: Meteorological classification of natural snow crystals. J. Fac. Sci., Hokkaido Univ., 2 , 321335.

  • Matrosov, S. Y., 1998: A dual-wavelength radar method to measure snowfall rate. J. Appl. Meteor., 37 , 15101521.

  • Matrosov, S. Y., 1992: Radar reflectivity in snowfall. IEEE Trans. Geosci. Remote Sens., 30 , 454461.

  • Matrosov, S. Y., Reinking R. F. , Kropfli R. A. , and Bartram B. W. , 1996: Estimation of ice hydrometeor types and shapes from radar polarization measurements. J. Atmos. Oceanic Technol., 13 , 8596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., Hovenier J. W. , and Travis L. D. , 2000: : Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications. Academic Press, 690 pp.

    • Crossref
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53 , 17101723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., Zhang R. , and Pitter R. L. , 1990: Mass-dimensional relationships for ice particles and the influence of riming on snowfall rates. J. Appl. Meteor., 29 , 153163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moisseev, D. N., Unal C. M. H. , Russchenberg H. W. J. , and Chandrasekar V. , 2004: Radar observations of snow above the melting layer. Preprints, Third European Conf. on Radar Meteorology and Hydrology (ERAD), Visby, Sweden, 407–411.

  • Pruppacher, H. R., and Klett J. D. , 1978: Microphysics of Clouds and Precipitation. Reidel, 954 pp.

  • Rajopadhyaya, D. K., May P. T. , and Vincent R. A. , 1994: The retrieval of ice particle size information from VHF wind profiler Doppler spectra. J. Atmos. Oceanic Technol., 11 , 15591568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, P. S., 1972: Broadband complex refractive indices of ice and water. Appl. Opt., 11 , 18361844.

  • Russchenberg, H. W. J., 1992: Ground Based Remote Sensing of Precipitation Using Multi-Polarized FM-CW Doppler Radar. Delft University Press, 206 pp.

    • Search Google Scholar
    • Export Citation
  • Russchenberg, H. W. J., and Coauthors, 2005: Ground-based atmospheric remote sensing in the Netherlands: European outlook. IEICE Trans. Commun., 88 , 22522258.

    • Search Google Scholar
    • Export Citation
  • Rust, B. W., 2002: Fitting nature’s basic functions. Part III: Exponentials, sinusoids, and nonlinear least squares. Comput. Sci. Eng., 4 , 7277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rust, B. W., 2003: Fitting nature’s basic functions. Part IV: The variable projection algorithm. Comput. Sci. Eng., 5 , 7479.

  • Sekhon, R. S., and Srivastava R. C. , 1970: Snow size spectra and radar reflectivity. J. Atmos. Sci., 27 , 299307.

  • Smith, P. L., 1984: Equivalent radar reflectivity factors for snow and ice particles. J. Climate Appl. Meteor., 23 , 12581260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Unal, C. M. H., and Moisseev D. N. , 2004: Combined Doppler and polarimetric radar measurements: Correction for spectrum aliasing and nonsimultaneous polarimetric measurements. J. Atmos. Oceanic Technol., 21 , 443456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P. K., 1982: Mathematical description of the shape of conical hydrometeors. J. Atmos. Sci., 39 , 26152622.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 882 557 26
PDF Downloads 308 54 3