Tornado Detection Using a Neuro–Fuzzy System to Integrate Shear and Spectral Signatures

Yadong Wang School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma

Search for other papers by Yadong Wang in
Current site
Google Scholar
PubMed
Close
,
Tian-You Yu School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma

Search for other papers by Tian-You Yu in
Current site
Google Scholar
PubMed
Close
,
Mark Yeary School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma

Search for other papers by Mark Yeary in
Current site
Google Scholar
PubMed
Close
,
Alan Shapiro School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Alan Shapiro in
Current site
Google Scholar
PubMed
Close
,
Shamim Nemati Department of Mathematics, University of Oklahoma, Norman, Oklahoma

Search for other papers by Shamim Nemati in
Current site
Google Scholar
PubMed
Close
,
Michael Foster National Weather Service, Norman, Oklahoma

Search for other papers by Michael Foster in
Current site
Google Scholar
PubMed
Close
,
David L. Andra Jr. National Weather Service, Norman, Oklahoma

Search for other papers by David L. Andra Jr. in
Current site
Google Scholar
PubMed
Close
, and
Michael Jain National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Michael Jain in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tornado vortices observed from Doppler radars are often associated with strong azimuthal shear and Doppler spectra that are wide and flattened. The current operational tornado detection algorithm (TDA) primarily searches for shear signatures that are larger than the predefined thresholds. In this work, a tornado detection procedure based on a fuzzy logic system is developed to integrate tornadic signatures in both the velocity and spectral domains. A novel feature of the system is that it is further enhanced by a neural network to refine the membership functions through a feedback training process. The hybrid approach herein, termed the neuro–fuzzy tornado detection algorithm (NFTDA), is initially verified using simulations and is subsequently tested on real data. The results demonstrate that NFTDA can detect tornadoes even when the shear signatures are degraded significantly so that they would create difficulties for typical vortex detection schemes. The performance of the NFTDA is assessed with level I time series data collected by the KOUN radar, a research Weather Surveillance Radar-1988 Doppler (WSR-88D) operated by the National Severe Storms Laboratory (NSSL), during two tornado outbreaks in central Oklahoma on 8 and 10 May 2003. In these cases, NFTDA and TDA provide good detections up to a range of 43 km. Moreover, NFTDA extends the detection range out to approximately 55 km, as the results indicate here, to detect a tornado of F0 magnitude on 10 May 2003.

Corresponding author address: Yadong Wang, 202 W. Boyd, School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019. Email: wyd@ou.edu

Abstract

Tornado vortices observed from Doppler radars are often associated with strong azimuthal shear and Doppler spectra that are wide and flattened. The current operational tornado detection algorithm (TDA) primarily searches for shear signatures that are larger than the predefined thresholds. In this work, a tornado detection procedure based on a fuzzy logic system is developed to integrate tornadic signatures in both the velocity and spectral domains. A novel feature of the system is that it is further enhanced by a neural network to refine the membership functions through a feedback training process. The hybrid approach herein, termed the neuro–fuzzy tornado detection algorithm (NFTDA), is initially verified using simulations and is subsequently tested on real data. The results demonstrate that NFTDA can detect tornadoes even when the shear signatures are degraded significantly so that they would create difficulties for typical vortex detection schemes. The performance of the NFTDA is assessed with level I time series data collected by the KOUN radar, a research Weather Surveillance Radar-1988 Doppler (WSR-88D) operated by the National Severe Storms Laboratory (NSSL), during two tornado outbreaks in central Oklahoma on 8 and 10 May 2003. In these cases, NFTDA and TDA provide good detections up to a range of 43 km. Moreover, NFTDA extends the detection range out to approximately 55 km, as the results indicate here, to detect a tornado of F0 magnitude on 10 May 2003.

Corresponding author address: Yadong Wang, 202 W. Boyd, School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019. Email: wyd@ou.edu

Save
  • Adlerman, E., Droegemeier K. , and Jones R. , 1999: A numerical simulation of cyclic mesocyclogenesis. J. Atmos. Sci., 56 , 20452069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bieringer, P., and Ray P. S. , 1996: A comparison of tornado warning lead times with and without NEXRAD Doppler radar. Wea. Forecasting, 11 , 4752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, B. H., Lee W-C. , Bell M. , Weiss C. C. , and Pazmany A. L. , 2003: Mobile Doppler radar observations of a tornado in a supercell near Bassett, Nebraska, on 5 June 1999. Part II: Tornado-vortex structure. Mon. Wea. Rev., 131 , 29682984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, B. H., French M. M. , Tanamachi R. L. , Frasier S. , Hardwick K. , Juyent F. , and Pazmany A. L. , 2007a: Close-range observations of tornadoes in supercells made with a dual-polarization, X-band, mobile Doppler radar. Mon. Wea. Rev., 135 , 15221543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., Weiss C. C. , French M. M. , Holthaus E. M. , Tananmachi R. L. , Frasier S. , and Pazmany A. L. , 2007b: The structure of tornadoes near Attica, Kansas, on 12 May 2004: High-resolution, mobile, Doppler radar observations. Mon. Wea. Rev., 135 , 475506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. A., 1998: Nomogram for aiding the interpretation of tornadic vortex signatures measured by Doppler radar. Wea. Forecasting, 13 , 505512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. A., and Lemon L. R. , 1976: Single Doppler radar vortex recognition. Part II: Tornadic vortex signatures. Preprints, 17th Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 104–109.

  • Brown, R. A., Lemon L. R. , and Burgess D. W. , 1978: Tornado detection by pulsed Doppler radar. Mon. Wea. Rev., 106 , 2938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. A., Wood V. T. , and Simians D. , 2002: Improved tornado detection using simulated and actual WSR-88D data with enhanced resolution. J. Atmos. Oceanic Technol., 19 , 17591771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgess, D. W., Lemon L. R. , and Brown R. A. , 1975: Tornado characteristics revealed by Doppler radar. Geophys. Res. Lett., 2 , 183184.

  • Burgess, D. W., Wood V. T. , and Brown R. A. , 1982: Mesocyclone evolution statistics. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 422–424.

  • Burgess, D. W., Magsig M. A. , Wurman J. , Dowell D. C. , and Richardson Y. , 2002: Radar observations of the 3 May 1999 Oklahoma City tornado. Wea. Forecasting, 17 , 456471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crum, T. D., and Alberty R. L. , 1993: The WSR-88D and the WSR-88D operational support facility. Bull. Amer. Meteor. Soc., 74 , 16691687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and Zrnić D. S. , 1993: Doppler Radar and Weather Observations. Academic Press, 562 pp.

  • Fang, M., Doviak R. J. , and Melniko V. , 2004: Spectrum width measured by WSR-88D: Error sources and statistics of various weather phenomena. J. Atmos. Oceanic Technol., 21 , 888904.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forbes, G. S., 1981: On the reliability of hook echoes as tornado indicators. Mon. Wea. Rev., 109 , 14571466.

  • Fujita, T., 1958: Mesoanalysis of the Illinois tornadoes of 9 April 1953. J. Meteor., 15 , 288296.

  • Liu, H., and Chandrasekar V. , 2000: Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy system, and in situ verification. J. Atmos. Oceanic Technol., 17 , 140164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marzban, C., and Stumpf G. J. , 1996: A neural network for tornado prediction based on Doppler radar-derived attributes. J. Appl. Meteor., 35 , 617626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mendel, J. M., 1995: Fuzzy logic systems for engineering: A tutorial. Proc. IEEE, 83 , 345377.

  • Mitchell, E. D., Vasiloff S. V. , Stumpf G. J. , Witt A. , Eilts M. D. , Johnson J. T. , and Thomas K. W. , 1998: The National Severe Storms Laboratory tornado detection algorithm. Wea. Forecasting, 13 , 352366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oppenheim, A. V., and Lim J. S. , 1981: The importance of phase in signals. Proc. IEEE, 69 , 529541.

  • Polger, P. D., Goldsmith B. S. , and Bocchierri R. C. , 1994: National Weather Service warning performance based on the WSR-88D. Bull. Amer. Meteor. Soc., 75 , 203214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ross, T. J., 2005: Fuzzy Logic with Engineering Applications. John Wiley & Sons, 628 pp.

  • Ryzhkov, A. V., Schuur T. J. , Burgess D. W. , and Zrnic D. S. , 2005: Polarimetric tornado detection. J. Appl. Meteor., 44 , 557570.

  • Simmons, K. M., and Sutter D. , 2005: WSR-88D radar, tornado warnings, and tornado casualties. Wea. Forecasting, 20 , 301310.

  • Speheger, A. D., 2006: On the imprecision of radar signature locations and storm path forecasts. Natl. Wea. Dig., 30 , 310.

  • Stout, G. E., and Huff F. A. , 1953: Radar records Illinois tornadogenesis. Bull. Amer. Meteor. Soc., 34 , 281284.

  • Vivekanandan, J., Zrnic D. S. , Ellis S. M. , Oye R. , Ryzhkov A. V. , and Straka J. , 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80 , 381388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witt, A., Eilts M. D. , Stumpf G. J. , Mitchell E. D. , Johnson J. T. , and Thomas K. W. , 1998: Evaluating the performance of WSR-88D severe storm detection algorithm. Wea. Forecasting, 13 , 515518.

    • Search Google Scholar
    • Export Citation
  • Wood, V. T., and Brown R. A. , 1997: Effects of radar sampling on single-Doppler velocity signatures of mesocyclones and tornadoes. Wea. Forecasting, 12 , 929939.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., and Gill S. , 2000: Finescale radar observations of the Dimmitt, Texas (2 June 1995), tornado. Mon. Wea. Rev., 128 , 21352163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., and Alexander C. , 2006: Scales of motion in tornadoes what radars cannot see what scale circulation is a tornado. Preprints, 22th Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., P11.6. [Available online at http://ams.confex.com/ams/pdfpapers/82353.pdf.].

  • Yeary, M., Nemati S. , Yu T-Y. , and Wang Y. , 2007: Tornadic time series detection using eigen analysis and a machine intelligence-based approach. IEEE Geosci. Remote Sens. Lett., 4 , 335339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, T-Y., Wang Y. , Shapiro A. , Yeary M. , Zrnic D. S. , and Doviak R. J. , 2007: Characterization of tornado spectral signatures using higher order spectra. J. Atmos. Oceanic Technol., 24 , 19972013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and Doviak R. J. , 1975: Velocity spectra of vortices scanned with a pulsed-Doppler radar. J. Appl. Meteor., 14 , 15311539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and Istok M. , 1980: Wind speeds in two tornadic storms and a tornado, deduced from Doppler spectra. J. Appl. Meteor., 19 , 14051415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., Doviak R. J. , and Burgess D. W. , 1977: Probing tornadoes with a pulse Doppler radar. Quart. J. Roy. Meteor. Soc., 103 , 707720.

  • Zrnić, D. S., Burgess D. W. , and Hennington L. D. , 1985: Doppler spectra and estimated wind-speed of a violent tornado. J. Climate Appl. Meteor., 24 , 10681081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., Ryzhkov A. , Straka J. , Liu Y. , and Chandrasekar V. , 2001: Testing a procedure for automatic classification of hydrometeor types. J. Atmos. Oceanic Technol., 18 , 892913.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 387 165 64
PDF Downloads 243 52 3