Measurements of Boundary Layer Profiles with In Situ Sensors and Doppler Lidar

Rod Frehlich University of Colorado, Boulder, Colorado

Search for other papers by Rod Frehlich in
Current site
Google Scholar
PubMed
Close
,
Yannick Meillier University of Colorado, Boulder, Colorado

Search for other papers by Yannick Meillier in
Current site
Google Scholar
PubMed
Close
, and
Michael L. Jensen University of Colorado, Boulder, Colorado

Search for other papers by Michael L. Jensen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new in situ measurement system and lidar processing algorithms were developed for improved measurements of boundary layer profiles. The first comparisons of simultaneous Doppler lidar–derived profiles of the key turbulence statistics of the two orthogonal horizontal velocity components (longitudinal and transverse) are presented. The instrument requirements for accurate observations of stably stratified turbulence were determined. A region of stably stratified low turbulence with constant gradients of temperature and velocity was observed above the nocturnal boundary layer using high-rate sensors. The important turbulence parameters were estimated, and turbulence spectra were consistent with new theoretical descriptions of stratified turbulence. The impact of removing the larger-scale velocity features in Doppler lidar estimates of turbulent velocity variance and length scales was investigated. The Doppler lidar–derived estimates of energy dissipation rate ε were found to be insensitive to spatial filtering of the large-scale atmospheric processes. The in situ and lidar-derived profiles were compared for the stable boundary layer in a suburban environment.

Corresponding author address: Rod Frehlich, Cooperative Institute for Research in Environmental Sciences, Campus Box 216, University of Colorado, Boulder, CO 80309. Email: rgf@cires.colorado.edu

This article included in the Fifth International Symposium on Tropospheric Profiling (ISTP) special collection.

Abstract

A new in situ measurement system and lidar processing algorithms were developed for improved measurements of boundary layer profiles. The first comparisons of simultaneous Doppler lidar–derived profiles of the key turbulence statistics of the two orthogonal horizontal velocity components (longitudinal and transverse) are presented. The instrument requirements for accurate observations of stably stratified turbulence were determined. A region of stably stratified low turbulence with constant gradients of temperature and velocity was observed above the nocturnal boundary layer using high-rate sensors. The important turbulence parameters were estimated, and turbulence spectra were consistent with new theoretical descriptions of stratified turbulence. The impact of removing the larger-scale velocity features in Doppler lidar estimates of turbulent velocity variance and length scales was investigated. The Doppler lidar–derived estimates of energy dissipation rate ε were found to be insensitive to spatial filtering of the large-scale atmospheric processes. The in situ and lidar-derived profiles were compared for the stable boundary layer in a suburban environment.

Corresponding author address: Rod Frehlich, Cooperative Institute for Research in Environmental Sciences, Campus Box 216, University of Colorado, Boulder, CO 80309. Email: rgf@cires.colorado.edu

This article included in the Fifth International Symposium on Tropospheric Profiling (ISTP) special collection.

Save
  • Azizyan, G. V., Koprov B. M. , and Kalugin V. V. , 1989: Spectra of turbulent velocity fluctuations in the viscous range. Izv. Atmos. Oceanic Phys., 25 , 935938.

    • Search Google Scholar
    • Export Citation
  • Baas, P., Steeneveld G. J. , van de Wiel B. J. H. , and Holtslag A. A. M. , 2006: Exploring self-correlation in flux–gradient relationships for stably stratified conditions. J. Atmos. Sci., 63 , 30453054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balsley, B. B., Jensen M. L. , and Frehlich R. G. , 1998: The use of state-of-the-art kites for profiling the lower atmosphere. Bound.-Layer Meteor., 87 , 125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balsley, B. B., Frehlich R. G. , Jensen M. L. , Meillier Y. , and Muschinski A. , 2003: Extreme gradients in the nighttime boundary layer: Structure, evolution, and potential causes. J. Atmos. Sci., 60 , 24962508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balsley, B. B., Frehlich R. G. , Jensen M. L. , and Meillier Y. , 2006: High-resolution in situ profiling through the stable boundary layer: Examination of the SBL top in terms of minimum shear, maximum stratification, and turbulence decrease. J. Atmos. Sci., 63 , 12911307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banakh, V. A., and Smalikho I. N. , 1997: Estimation of the turbulence energy dissipation rate from pulsed Doppler lidar data. Atmos. Oceanic Opt., 10 , 957965.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Pichugina Y. L. , and Newsom R. K. , 2003: Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer. J. Atmos. Sci., 60 , 25492555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Pichugina Y. L. , and Brewer W. A. , 2006: Turbulent velocity-variance in the stable boundary layer generated by a nocturnal low-level jet. J. Atmos. Sci., 63 , 27002719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrendt, A., Nakamura T. , and Tsuda T. , 2004: Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere. Appl. Opt., 43 , 29302939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bertin, F., Barat J. , and Wilson R. , 1997: Energy dissipation rates, eddy diffusivity, and the Prandtl number: An in situ experimental approach and its consequences on radar estimate of turbulent parameters. Radio Sci., 32 , 791804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and Wexler R. , 1968: The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteor., 7 , 105113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, P. W., 2006: Generation of eddy dissipation rate map at the Hong Kong International Airport based on Doppler lidar data. Preprints, 12th Conf. on Aviation, Range, and Aerospace Meteorology, Atlanta, GA, Amer. Meteor. Soc., P5.6. [Available online at http://ams.confex.com/ams/pdfpapers/100309.pdf.].

  • Davies, F., Collier C. G. , Pearson G. N. , and Bozier K. E. , 2004: Doppler lidar measurements of turbulent structure function over an urban area. J. Atmos. Oceanic Technol., 21 , 753761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eaton, F. D., McLaughlin S. A. , and Hines J. R. , 1995: A new frequency-modulated continuous wave radar for studying planetary boundary layer morphology. Radio Sci., 30 , 7588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esau, I. N., and Zilitinkevich S. S. , 2006: Universal dependencies between turbulent and mean flow parameters in stably and neutrally stratified planetary boundary layers. Nonlinear Processes Geophys., 13 , 135144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R., 1997: Effects of wind turbulence on coherent Doppler lidar performance. J. Atmos. Oceanic Technol., 14 , 5475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R., 2001a: Estimation of velocity error for Doppler lidar measurements. J. Atmos. Oceanic Technol., 18 , 16281639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R., 2001b: Errors for space-based Doppler lidar wind measurements: Definition, performance, and verification. J. Atmos. Oceanic Technol., 18 , 17491772.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R., 2006: Adaptive data assimilation including the effect of spatial variations in observation error. Quart. J. Roy. Meteor. Soc., 132 , 12251257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R., and Cornman L. , 2002: Estimating spatial velocity statistics with coherent Doppler lidar. J. Atmos. Oceanic Technol., 19 , 355366.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R., and Sharman R. , 2004: Estimates of turbulence from numerical weather prediction model output with applications to turbulence diagnosis and data assimilation. Mon. Wea. Rev., 132 , 23082324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R., Hannon S. , and Henderson S. , 1994: Performance of a 2-μm coherent Doppler lidar for wind measurements. J. Atmos. Oceanic Technol., 11 , 15171528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R., Hannon S. , and Henderson S. , 1997: Coherent Doppler lidar measurements of winds in the weak signal regime. Appl. Opt., 36 , 34913499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R., Hannon S. , and Henderson S. , 1998: Coherent Doppler lidar measurements of wind field statistics. Bound.-Layer Meteor., 86 , 233256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R., Meillier Y. , Jensen M. L. , and Balsley B. , 2003: Turbulence measurements with the CIRES tethered lifting system during CASES-99: Calibration and spectral analysis of temperature and velocity. J. Atmos. Sci., 60 , 24872495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R., Meillier Y. , Jensen M. L. , and Balsley B. , 2004: A statistical description of small-scale turbulence in the low-level nocturnal jet. J. Atmos. Sci., 61 , 10791085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R., Meillier Y. , Jensen M. L. , Balsley B. , and Sharman R. , 2006: Measurements of boundary layer profiles in an urban environment. J. Appl. Meteor. Climatol., 45 , 821837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., 2005: Conditions contributing to adverse loading of wind turbines in the nocturnal boundary layer: Final report. National Renewable Energy Laboratory Tech. Rep. NREL/SR-500–37809, 44 pp.

  • Gibson-Wilde, D., Werne J. , Fritts D. , and Hill R. , 2000: Direct numerical simulation of VHF radar measurements of turbulence in the mesosphere. Radio Sci., 35 , 783798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gossard, E. E., and Frisch A. S. , 1987: Relationship of the variances of temperature and velocity to atmospheric static stability—Application to radar and acoustic sounding. J. Climate Appl. Meteor., 26 , 10211036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grund, C. J., Banta R. M. , George J. L. , Howell J. N. , Post M. J. , Richter R. A. , and Weickmann A. M. , 2001: High-resolution Doppler lidar for boundary layer and cloud research. J. Atmos. Oceanic Technol., 18 , 376393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hebert, D. A., and de Bruyn Kops S. M. , 2006: Relationship between vertical shear rate and kinetic energy dissipation rate in stably stratified flows. Geophys. Res. Lett., 33 .L06602, doi:10.1029/2005GL025071.

    • Search Google Scholar
    • Export Citation
  • Henderson, S. W., Hale C. P. , Magee J. R. , Kavaya M. J. , and Huffaker A. V. , 1991: Eye-safe coherent laser radar system at 2.1 μm using Tm,Ho:YAG lasers. Opt. Lett., 16 , 773775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, S. W., Suni P. J. M. , Hale C. P. , Hannon S. M. , Magee J. R. , Bruns D. L. , and Yuen E. H. , 1993: Coherent laser radar at 2 μm using solid-state lasers. IEEE Trans. Geosci. Remote Sens., 31 , 415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, R. J., 1978: Models of the scalar spectrum for turbulent advection. J. Fluid Mech., 88 , 541562.

  • Hill, R. J., 1996: Corrections to Taylor’s frozen turbulence approximation. Atmos. Res., 40 , 153175.

  • Kaimal, J. C., and Finnigan J. J. , 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, 302 pp.

    • Search Google Scholar
    • Export Citation
  • Kelley, N. D., Jonkman B. J. , and Scott G. N. , 2006: The Great Plains turbulence environment: Its origins, impact, and simulation. National Renewable Energy Laboratory Tech. Rep. NREL/CP-500–40176, 21 pp.

  • Klipp, C. L., and Mahrt L. , 2004: Flux-gradient relationship, self-correlation and intermittency in the stable boundary layer. Quart. J. Roy. Meteor. Soc., 130 , 20872103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1962: A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech., 13 , 8285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., and Kristensen L. , 1988: Applications of dual aircraft formation flights. J. Atmos. Oceanic Technol., 5 , 715726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., and Sun J. , 2007: The spectral composition of fluxes and variances over land and sea out to the mesoscale. Bound.-Layer Meteor., 125 , 6384. doi:10.1007/s10546-007-9191-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 2006: The energy cascade in a strongly stratified fluid. J. Fluid Mech., 550 , 207242.

  • Lothon, M., Lenschow D. H. , and Mayor S. D. , 2006: Coherence and scale of vertical velocity in the convective boundary layer from a Doppler lidar. Bound.-Layer Meteor., 121 , 521536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1998: Flux sampling errors for aircraft and towers. J. Atmos. Oceanic Technol., 15 , 416429.

  • Majda, A. J., and Shefter M. G. , 1998: Elementary stratified flows with instability at large Richardson number. J. Fluid Mech., 376 , 319350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., and Svensson G. , 2007: Observations of stably stratified shear-driven atmospheric turbulence at low and high Richardson numbers. J. Atmos. Sci., 64 , 645655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meillier, Y. P., Frehlich R. G. , Jones R. M. , and Balsley B. B. , 2008: Modulation of small-scale turbulence by ducted gravity waves in the nocturnal boundary layer. J. Atmos. Sci., 65 , 14141427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and Yaglom A. M. , 1975: Statistical Fluid Mechanics: Mechanics of Turbulence. Vol. 2. MIT Press, 874 pp.

  • Muschinski, A., Frehlich R. , Jensen M. L. , Hugo R. , Hoff A. , Eaton F. , and Balsley B. , 2001: Fine-scale measurements of turbulence in the lower troposphere: An intercomparison between a kite- and balloon-borne, and a helicopter-borne measurement system. Bound.-Layer Meteor., 98 , 219250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearson, G. N., and Rye B. J. , 1992: Frequency fidelity of a compact CO2 Doppler lidar transmitter. Appl. Opt., 31 , 64756484.

  • Pearson, G. N., and Collier C. G. , 1999: A pulsed coherent CO2 lidar for boundary-layer meteorology. Quart. J. Roy. Meteor. Soc., 125 , 27032721.

    • Search Google Scholar
    • Export Citation
  • Piper, M., and Lundquist J. K. , 2004: Surface layer turbulence measurements during a frontal passage. J. Atmos. Sci., 61 , 17681780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Post, M. J., and Cupp R. E. , 1990: Optimizing a pulsed Doppler lidar. Appl. Opt., 29 , 41454158.

  • Poulos, G. S., and Coauthors, 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83 , 555581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riley, J. J., and de Bruyn Kops S. M. , 2003: Dynamics of turbulence strongly influenced by buoyancy. Phys. Fluids, 15 , 20472059.

  • Roth, M., 2000: Review of atmospheric turbulence over cities. Quart. J. Roy. Meteor. Soc., 126 , 941990.

  • Saiki, E. M., Moeng C-H. , and Sullivan P. , 2000: Large-eddy simulation of the stably stratified planetary boundary layer. Bound.-Layer Meteor., 95 , 130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seibert, P., Beyrich F. , Gryning S. E. , Joffre S. , Rasmussen A. , and Tercier P. , 2000: Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ., 34 , 10011027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smalikho, I., Köpp F. , and Rahm S. , 2005: Measurement of atmospheric turbulence by 2-μm Doppler lidar. J. Atmos. Oceanic Technol., 22 , 17331747.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., and Moum J. N. , 2000a: Length scales of turbulence in stably stratified mixing layers. Phys. Fluids, 12 , 13271342.

  • Smyth, W. D., and Moum J. N. , 2000b: Anisotropy of turbulence in stably stratified mixing layers. Phys. Fluids, 12 , 13431362.

  • Sorbjan, Z., 2006: Local structure of turbulence in stably stratified boundary layers. J. Atmos. Sci., 63 , 15261537.

  • Strang, E. J., and Fernando H. J. S. , 2001: Vertical mixing and transports through a stratified shear layer. J. Phys. Oceanogr., 31 , 20262048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., Horst T. W. , Lenschow D. H. , Moeng C-H. , and Weil J. C. , 2003: Structure of subfilter-scale fluxes in the atmospheric surface layer with application to large-eddy simulation modeling. Bound.-Layer Meteor., 482 , 101139.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1938: The spectrum of turbulence. Proc. Roy. Soc. London, A132 , 476490.

  • Tjernström, M., 1993: Turbulence length scales in stably stratified free shear flow analyzed from slant aircraft profiles. J. Appl. Meteor., 32 , 948963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickers, D., and Mahrt L. , 2003: The co-spectral gap and turbulent flux calculations. J. Atmos. Oceanic Technol., 20 , 660672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Werne, J., and Fritts D. C. , 1999: Stratified shear turbulence: Evolution and statistics. Geophys. Res. Lett., 26 , 439442.

  • Werne, J., and Fritts D. C. , 2001: Anisotropy in a stratified shear layer. Phys. Chem. Earth, 26B , 263268.

  • Wyngaard, J. C., and Clifford S. F. , 1977: Taylor’s hypothesis and high-frequency turbulence spectra. J. Atmos. Sci., 34 , 922929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S., and Baklanov A. , 2002: Calculation of the height of the stable boundary layer in practical applications. Bound.-Layer Meteor., 105 , 389409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S., Esau I. , and Baklanov A. , 2007: Further comments on the equilibrium height of neutral and stable planetary boundary layers. Quart. J. Roy. Meteor. Soc., 133 , 265271.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 469 179 17
PDF Downloads 221 50 6