Lidar Observations of the Vertical Aerosol Flux in the Planetary Boundary Layer

Ronny Engelmann Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Ronny Engelmann in
Current site
Google Scholar
PubMed
Close
,
Ulla Wandinger Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Ulla Wandinger in
Current site
Google Scholar
PubMed
Close
,
Albert Ansmann Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Albert Ansmann in
Current site
Google Scholar
PubMed
Close
,
Detlef Müller Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Detlef Müller in
Current site
Google Scholar
PubMed
Close
,
Egidijus Žeromskis Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Egidijus Žeromskis in
Current site
Google Scholar
PubMed
Close
,
Dietrich Althausen Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Dietrich Althausen in
Current site
Google Scholar
PubMed
Close
, and
Birgit Wehner Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Birgit Wehner in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The vertical aerosol transport in the planetary boundary layer (PBL) is investigated with lidars. Profiles of the vertical wind velocity are measured with a 2-μm Doppler wind lidar. Aerosol parameters are derived from observations with an aerosol Raman lidar. Both instruments were operated next to each other at the Institute for Tropospheric Research (IfT) in Leipzig, Germany. The eddy correlation technique is applied to calculate turbulent particle mass fluxes on the basis of aerosol backscatter and vertical wind data obtained with a resolution of 75 m and 5 s throughout the PBL. A conversion of particle backscatter to particle mass is performed by applying the IfT inversion scheme to three-wavelength Raman lidar observations. The method, so far, is restricted to stationary and dry atmospheric conditions under which hygroscopic particle growth can be neglected. In a case study, particle mass fluxes of 0.5–2.5 μg m−2 s−1 were found in the upper part of a convective PBL on 12 September 2006.

Corresponding author address: Ronny Engelmann, Leibniz Institute for Tropospheric Research, Permoserstr. 15, 04318 Leipzig, Germany. Email: ronny@tropos.de

This article included in the Fifth International Symposium on Tropospheric Profiling (ISTP) special collection.

Abstract

The vertical aerosol transport in the planetary boundary layer (PBL) is investigated with lidars. Profiles of the vertical wind velocity are measured with a 2-μm Doppler wind lidar. Aerosol parameters are derived from observations with an aerosol Raman lidar. Both instruments were operated next to each other at the Institute for Tropospheric Research (IfT) in Leipzig, Germany. The eddy correlation technique is applied to calculate turbulent particle mass fluxes on the basis of aerosol backscatter and vertical wind data obtained with a resolution of 75 m and 5 s throughout the PBL. A conversion of particle backscatter to particle mass is performed by applying the IfT inversion scheme to three-wavelength Raman lidar observations. The method, so far, is restricted to stationary and dry atmospheric conditions under which hygroscopic particle growth can be neglected. In a case study, particle mass fluxes of 0.5–2.5 μg m−2 s−1 were found in the upper part of a convective PBL on 12 September 2006.

Corresponding author address: Ronny Engelmann, Leibniz Institute for Tropospheric Research, Permoserstr. 15, 04318 Leipzig, Germany. Email: ronny@tropos.de

This article included in the Fifth International Symposium on Tropospheric Profiling (ISTP) special collection.

Save
  • Althausen, D., Müller D. , Ansmann A. , Wandinger U. , Hube H. , Clauder E. , and Zörner S. , 2000: Scanning 6-wavelength 11-channel aerosol lidar. J. Atmos. Oceanic Technol., 17 , 14691482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ansmann, A., and Müller D. , 2005: Lidar and atmospheric aerosol particles. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, Ed., Springer, 105–141.

    • Search Google Scholar
    • Export Citation
  • Buzorius, G., Rannik U. , Mäkelä J. M. , Vesala T. , and Kulmala M. , 1998: Vertical aerosol particle fluxes measured by eddy covariance technique using condensational particle counter. J. Aerosol Sci., 29 , 157171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buzorius, G., Kalogiros J. , and Varutbangkul V. , 2006: Airborne aerosol flux measurements with eddy correlation above the ocean in a coastal environment. J. Aerosol Sci., 37 , 12671286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engelmann, R., 2003: Entwicklung eines Mini-Ramanlidar und Aufbau einer kombinierten Sende- und Empfangseinheit für ein Doppler-Wind-Lidar (Development of a portable Raman lidar and setup of transmitting and receiving optics for a Doppler-wind lidar). Diploma thesis, Institute for Atmospheric Research, University of Leipzig, 57 pp.

  • Fernald, F. G., 1984: Analysis of atmospheric lidar observations: Some comments. Appl. Opt., 23 , 652653.

  • Giez, A., Ehret G. , Schwiesow R. L. , Davies K. J. , and Lenschow D. H. , 1999: Water vapor flux measurements from ground–based vertically pointed water vapor differential absorption and Doppler lidars. J. Atmos. Oceanic Technol., 16 , 237250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grund, C., Banta R. , George J. , Howell J. , Post M. , Richter R. , and Weickmann A. , 2001: High-resolution Doppler lidar for boundary layer and cloud research. J. Atmos. Oceanic Technol., 18 , 376393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., Ovtchinnikov M. , Pinsky M. , Pokrovsky A. , and Krugliak H. , 2000: Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res., 55 , 159224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiemle, C., and Coauthors, 2007: Latent heat flux profiles from collocated airborne water vapor and wind lidars during IHOP_2002. J. Atmos. Oceanic Technol., 24 , 627639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kristensen, L., Mann J. , Oncley S. , and Wyngaard J. , 1997: How close is close enough when measuring scalar fluxes with displaced sensors? J. Atmos. Oceanic Technol., 14 , 814821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D., Mann J. , and Kristensen L. , 1994: How long is long enough when measuring fluxes and other turbulent statistics? J. Atmos. Oceanic Technol., 11 , 661673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Linné, H., Hennemuth B. , Bösenberg J. , and Ertel K. , 2007: Water vapour flux profiles in the convective boundary layer. Theor. Appl. Climatol., 87 , 201211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mattis, I., and Coauthors, 2002: Relative-humidity profiling in the troposphere with a Raman lidar. Appl. Opt., 41 , 64516462.

  • Müller, D., Wandinger U. , Althausen D. , and Fiebig M. , 2001: Comprehensive particle characterization from three-wavelength Raman-lidar observations. Appl. Opt., 40 , 48634869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, N. T., Dubovik O. , and Eck T. F. , 2001a: Modified Ångström exponent for the characterization of submicrometer aerosols. Appl. Opt., 40 , 23682375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, N. T., Eck B. N. , Smirnov A. , Dubovik O. , and Royer A. , 2001b: Bimodal size distribution influences on the variation of Ångström derivatives in spectral and optical depth space. J. Geophys. Res., 106 , 97879806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhone, P., 2004: Development of the data acquisition and analysis systems for a portable Raman lidar and a Doppler wind lidar. Diploma thesis, Institute for Atmospheric Research, University of Leipzig, 72 pp.

  • Senff, C., Bösenberg J. , and Peters G. , 1994: Measurement of water vapor flux profiles in the convective boundary layer with lidar and radar–RASS. J. Atmos. Oceanic Technol., 11 , 8593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senff, C., Bösenberg J. , Peters G. , and Schaberl T. , 1996: Remote sensing of turbulent ozone fluxes and the ozone budget in the convective boundary layer with DIAL and radar–RASS: A case study. Contrib. Atmos. Phys., 69 , 161176.

    • Search Google Scholar
    • Export Citation
  • Stull, R., 1997: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 670 pp.

  • Van Dingenen, R., and Coauthors, 2004: A European aerosol phenomenology—1: Physical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos. Environ., 38 , 25612577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wandinger, U., Linné H. , Bösenberg J. , Žeromskis E. , Althausen D. , and Müller D. , 2004: Turbulent aerosol fluxes determined from combined observations with Doppler wind and Raman aerosol lidar. Proc. 22nd Int. Laser Radar Conf. (ILRC 2004), Matera, Italy, European Space Agency, 743–746.

  • Wulfmeyer, V., Randall M. , Brewer A. , and Hardesty R. M. , 2000: 2-μm Doppler lidar transmitter with high frequency stability and low chirp. Opt. Lett., 25 , 12281230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Žeromskis, E., Wandinger U. , Althausen D. , Engelmann R. , Rhone P. , and Foster R. , 2003: Coherent Doppler lidar for wind profiling in the lower troposphere. Proc. Sixth Int. Symp. on Tropospheric Profiling: Needs and Technologies, Leipzig, Germany, Institute for Tropospheric Research, 71–73.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4784 3912 100
PDF Downloads 810 163 14