Evaluation of an LES-Based Wind Profiler Simulator for Observations of a Daytime Atmospheric Convective Boundary Layer

Danny E. Scipión School of Electrical and Computer Engineering, and Atmospheric Radar Research Center, University of Oklahoma, Norman, Oklahoma

Search for other papers by Danny E. Scipión in
Current site
Google Scholar
PubMed
Close
,
Phillip B. Chilson School of Meteorology, and Atmospheric Radar Research Center, University of Oklahoma, Norman, Oklahoma

Search for other papers by Phillip B. Chilson in
Current site
Google Scholar
PubMed
Close
,
Evgeni Fedorovich School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Evgeni Fedorovich in
Current site
Google Scholar
PubMed
Close
, and
Robert D. Palmer School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Robert D. Palmer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The daytime atmospheric convective boundary layer (CBL) is characterized by strong turbulence that is primarily caused by buoyancy forced from the heated underlying surface. The present study considers a combination of a virtual radar and large eddy simulation (LES) techniques to characterize the CBL. Data representative of a daytime CBL with wind shear were generated by LES and used in the virtual boundary layer radar (BLR) with both vertical and multiple off-vertical beams and frequencies. To evaluate the virtual radar, a multiple radar experiment (MRE) was conducted using five virtual radars with common resolution volumes at two different altitudes. Three-dimensional wind fields were retrieved from the virtual radar data and compared with the LES output. It is shown that data produced from the virtual BLR are representative of what one expects to retrieve using a real BLR and the measured wind fields match those of the LES. Additionally, results from a frequency domain interferometry (FDI) comparison are presented, with the ultimate goal of enhancing the resolution of conventional radar measurements. The virtual BLR produces measurements consistent with the LES data fields and provides a suitable platform for validating radar signal processing algorithms.

Corresponding author address: Danny E. Scipión, University of Oklahoma, School of Meteorology, 120 David L. Boren Blvd., Room 5900, Norman, OK 73072-7307. Email: dscipion@ou.edu

This article included in the Fifth International Symposium on Tropospheric Profiling (ISTP) special collection.

Abstract

The daytime atmospheric convective boundary layer (CBL) is characterized by strong turbulence that is primarily caused by buoyancy forced from the heated underlying surface. The present study considers a combination of a virtual radar and large eddy simulation (LES) techniques to characterize the CBL. Data representative of a daytime CBL with wind shear were generated by LES and used in the virtual boundary layer radar (BLR) with both vertical and multiple off-vertical beams and frequencies. To evaluate the virtual radar, a multiple radar experiment (MRE) was conducted using five virtual radars with common resolution volumes at two different altitudes. Three-dimensional wind fields were retrieved from the virtual radar data and compared with the LES output. It is shown that data produced from the virtual BLR are representative of what one expects to retrieve using a real BLR and the measured wind fields match those of the LES. Additionally, results from a frequency domain interferometry (FDI) comparison are presented, with the ultimate goal of enhancing the resolution of conventional radar measurements. The virtual BLR produces measurements consistent with the LES data fields and provides a suitable platform for validating radar signal processing algorithms.

Corresponding author address: Danny E. Scipión, University of Oklahoma, School of Meteorology, 120 David L. Boren Blvd., Room 5900, Norman, OK 73072-7307. Email: dscipion@ou.edu

This article included in the Fifth International Symposium on Tropospheric Profiling (ISTP) special collection.

Save
  • Angevine, W. M., 1999: Entrainment results including advection and case studies from the Flatland boundary layer experiments. J. Geophys. Res., 104 , 3094730963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angevine, W. M., White A. B. , and Avery S. K. , 1994: Boundary-layer depth and entrainment zone characterization with a boundary-layer profiler. Bound.-Layer Meteor., 68 , 375385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balsley, B. B., and Gage K. , 1982: On the use of radars for operational wind profiling. Bull. Amer. Meteor. Soc., 63 , 10091018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bean, B. R., and Dutton E. J. , 1966: Radio Meteorology. National Bureau of Standards Monogr., No. 92, U.S. Government Printing Office, 435 pp.

    • Search Google Scholar
    • Export Citation
  • Brewster, K. A., and Zrnić D. S. , 1986: Comparison of eddy dissipation rates from spatial spectra of Doppler velocities and Doppler spectrum widths. J. Atmos. Oceanic Technol., 3 , 440452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheong, B. L., Hoffman M. W. , and Palmer R. D. , 2004: Efficient atmospheric simulation for high-resolution radar imaging applications. J. Atmos. Oceanic Technol., 21 , 374378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chilson, P. B., 2004: The retrieval and validation of Doppler velocity estimates from range imaging. J. Atmos. Oceanic Technol., 21 , 10331043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chilson, P. B., and Schmidt G. , 1996: Implementation of frequency domain interferometry at the SOUSY VHF radar: First results. Radio Sci., 31 , 263272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chilson, P. B., Yu T-Y. , Strauch R. G. , Muschinski A. P. , and Palmer R. D. , 2003: Implementation and validation of range imaging on a UHF radar wind profiler. J. Atmos. Oceanic Technol., 20 , 987996.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohn, S. A., 1995: Radar measurements of turbulent eddy dissipation rate in the troposphere: A comparison of techniques. J. Atmos. Oceanic Technol., 12 , 8595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohn, S. A., and Angevine W. M. , 2000: Boundary level height and entrainment zone thickness measured by lidars and wind-profiling radars. J. Appl. Meteor., 39 , 12331247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conzemius, R. J., and Fedorovich E. , 2006: Dynamics of sheared convective boundary layer entrainment. Part I: Meteorological background and large-eddy simulations. J. Atmos. Sci., 63 , 11511178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dabberdt, W. F., Frederick G. L. , Hardesty R. M. , Lee W. C. , and Underwood K. , 2004: Advances in meteorological instrumentation for air quality and emergency response. Meteor. Atmos. Phys., 87 , 5788.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1972: Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci., 29 , 91115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and Zrnić D. S. , 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • Eaton, F. D., McLaughlin S. A. , and Hines J. R. , 1995: A new frequency-modulated continuous wave radar for studying planetary boundary layer morphology. Radio Sci., 30 , 7588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ecklund, W. L., Gage K. S. , and Williams C. R. , 1995: Tropical precipitation studies using a 915-MHz wind profiler. Radio Sci., 30 , 10551064.

  • Fedorovich, E., Nieuwstadt F. T. M. , and Kaiser R. , 2001: Numerical and laboratory study of a horizontally evolving convective boundary layer. Part I: Transition regimes and development of the mixed layer. J. Atmos. Sci., 58 , 7086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorovich, E., and Coauthors, 2004a: Entrainment into sheared convective boundary layers as predicted by different large-eddy simulation codes. Preprints, 16th Symp. on Boundary Layers and Turbulence, Portland, ME, Amer. Meteor. Soc., P4.7. [Available online at http://ams.confex.com/ams/pdfpapers/78656.pdf.].

  • Fedorovich, E., Conzemius R. , and Mironov D. , 2004b: Convective entrainment into a shear-free linearly stratified atmosphere: Bulk models reevaluated through large-eddy simulations. J. Atmos. Sci., 61 , 281295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gage, K. S., and Balsley B. B. , 1984: MST radar studies of wind and turbulence in the middle atmosphere. J. Atmos. Terr. Phys., 46 , 739753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gage, K. S., Williams C. R. , and Ecklund W. L. , 1994: UHF wind profilers: A new tool for diagnosing and classifying tropical convective cloud systems. Bull. Amer. Meteor. Soc., 75 , 22892294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimsdell, A. W., and Angevine W. M. , 2002: Observation of the afternoon transition of the convective boundary layer. J. Appl. Meteor., 41 , 311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., and Sekhon R. S. , 1974: Objective determination of the noise level in Doppler spectra. J. Appl. Meteor., 13 , 808811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hocking, W. K., 1983: On the extraction of atmospheric turbulence parameters from radar backscatter Doppler spectra. Part I: Theory. J. Atmos. Terr. Phys., 45 , 89102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hocking, W. K., 1985: Measurement of turbulent eddy dissipation rates in the middle atmosphere by radar techniques: A review. Radio Sci., 20 , 14031422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holdsworth, D. A., and Reid I. M. , 1995: A simple model of atmospheric radar backscatter: Description and application to the full correlation analysis of spaced antenna data. Radio Sci., 30 , 12631280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Academic Press, 535 pp.

  • Holtslag, A. A. M., and Duynkerke P. G. , 1998: Clear and Cloudy Boundary Layers. Royal Netherlands Academy of Arts and Sciences, 372 pp.

    • Search Google Scholar
    • Export Citation
  • Khanna, S., and Brasseur J. G. , 1998: Three-dimensional buoyancy- and shear-induced local structure of the atmospheric boundary layer. J. Atmos. Sci., 55 , 710743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kudeki, E., and Stitt G. R. , 1987: Frequency domain interferometry: A high-resolution radar technique for studies of atmospheric turbulence. Geophys. Res. Lett., 14 , 198201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kudeki, E., and Stitt G. R. , 1990: Frequency domain interferometry studies of mesospheric layers at Jicamarca. Radio Sci., 25 , 575590.

  • Luce, H., Yamamoto M. , Fukao S. , Helal D. , and Crochet M. , 2001: A frequency domain radar interferometric imaging (FII) technique based on high-resolution methods. J. Atmos. Solar-Terr. Phys., 63 , 221234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, P. J., 1989: Large-eddy simulation of the convective atmospheric boundary layer. J. Atmos. Sci., 46 , 14921516.

  • Moeng, C-H., 1984: A large-eddy-simulation model for the study of planetary boundary layer turbulence. J. Atmos. Sci., 41 , 20522062.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C-H., and Sullivan P. P. , 1994: A comparison of shear- and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51 , 9991022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muschinski, A. P., Sullivan P. P. , Wuertz D. B. , Hill R. J. , Cohn S. A. , Lenschow D. H. , and Doviak R. J. , 1999: First synthesis of wind-profiler signal on the basis of large-eddy simulation data. Radio Sci., 34 , 14371459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., 1997: Doppler radar spectral width broadening due to beamwidth and wind shear. Ann. Geophys., 15 , 786796.

  • Nieuwstadt, F. T. M., 1990: Direct and large-eddy simulation of free convection. Proc. Ninth Int. Heat Transfer Conf., Jerusalem, Israel, American Society of Mechanical Engineers, 37–47.

    • Crossref
    • Export Citation
  • Ottersten, H., 1969: Mean vertical gradient of potential refractive index in turbulent mixing and radar detection of CAT. Radio Sci., 4 , 12471249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, R. D., Woodman R. F. , Fukao S. , Larsen M. F. , Yamamoto M. , Tsuda T. , and Kato S. , 1990: Frequency domain interferometry observations of tropo/stratospheric scattering layers using the MU radar: Description and first results. Geophys. Res. Lett., 17 , 21892192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, R. D., Fukao S. , Larsen M. F. , Yamamoto M. , Tsuda T. , and Kato S. , 1992: Oblique frequency domain interferometry measurements using the middle and upper atmosphere radar. Radio Sci., 27 , 713720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, R. D., Yu T-Y. , and Chilson P. B. , 1999: Range imaging using frequency diversity. Radio Sci., 34 , 14851496.

  • Rogers, R. R., Ecklund W. L. , Carter D. A. , Gage K. S. , and Ethier S. A. , 1993: Research applications of a boundary-layer wind profiler. Bull. Amer. Meteor. Soc., 74 , 567580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, H., and Schumann U. , 1989: Coherent structure of the convective boundary layer derived from large-eddy simulations. J. Fluid Mech., 200 , 511562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheppard, E. L., and Larsen M. F. , 1992: Analysis of model simulations of spaced antenna/radar interferometer measurements. Radio Sci., 27 , 759768.

  • Sorbjan, Z., 1996: Effects caused by varying the strength of the capping inversion based on a large-eddy simulation model of the shear-free convective boundary layer. J. Atmos. Sci., 53 , 20152024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 2004: Large-eddy simulations of the baroclinic mixed layer. Bound.-Layer Meteor., 112 , 5780.

  • Stevens, B., and Lenschow D. H. , 2001: Observations, experiments, and large-eddy simulation. Bull. Amer. Meteor. Soc., 82 , 283294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P., Moeng C-H. , Stevens B. , Lenschow D. H. , and Mayor S. D. , 1998: Structure of the entrainment zone capping the convective atmospheric boundary layer. J. Atmos. Sci., 55 , 30423064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tatarskii, V. I., 1961: Wave Propagation in a Turbulent Medium. McGraw-Hill, 285 pp.

  • Taylor, G. I., 1938: The spectrum turbulence. Proc. Roy. Soc. London, 164A , 476490.

  • VanZanten, M. C., Duynkerke P. G. , and Cuijpers J. W. M. , 1999: Entrainment parameterization in convective boundary layers. J. Atmos. Sci., 56 , 813828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, A. B., 1997: Radar remote sensing of scalar and velocity micro turbulence in the convective boundary layer. NOAA Tech. Memo. ERL ETL-276, Environmental Technology Laboratory, 127 pp.

  • White, A. B., Lataitis R. J. , and Lawrence R. S. , 1999: Space and time filtering of remotely sensed velocity turbulence. J. Atmos. Oceanic Technol., 16 , 19671972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilczak, J. M., Gossard E. E. , Neff W. D. , and Eberhard W. L. , 1996: Ground-based remote sensing of the atmospheric boundary layer: 25 years of progress. Bound.-Layer Meteor., 78 , 321349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 1998: Experiment, numerical modeling, numerical simulation, and their roles in the study of convection. Buoyant Convection in Geophysical Flows, E. J. Plate et al., Eds., Kluwer Academic, 239–252.

    • Search Google Scholar
    • Export Citation
  • Yu, T-Y., 2000: Radar studies of the atmosphere using spatial and frequency diversity. Ph.D. thesis, University of Nebraska, 224 pp.

  • Zilitinkevich, S. S., 1991: Turbulent Penetrative Convection. Avebury Technical, 179 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 575 334 26
PDF Downloads 166 74 15