Platform-Motion Correction of Velocity Measured by Doppler Lidar

Reginald J. Hill Cooperative Institute for Research in Environmental Sciences, University of Colorado, and National Oceanic and Atmospheric Administration/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Reginald J. Hill in
Current site
Google Scholar
PubMed
Close
,
W. Alan Brewer National Oceanic and Atmospheric Administration/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by W. Alan Brewer in
Current site
Google Scholar
PubMed
Close
, and
Sara C. Tucker Cooperative Institute for Research in Environmental Sciences, University of Colorado, and National Oceanic and Atmospheric Administration/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Sara C. Tucker in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The NOAA/Earth System Research Laboratory (ESRL) has two coherent Doppler lidar systems that have been deployed on board research vessels to obtain data during several experiments. The instruments measure the wind velocity relative to the motion of the lidar; therefore, correction for the motion of the platform is required. This article gives a thorough analysis of the correction for lidar velocity measurements. The analysis is general enough to be applied to Doppler velocity measurements from all monostatic ship- and aircraftborne lidars and radars, and generalization to bistatic systems is achievable. The correction is demonstrated using miniature master-oscillator power-amplifier (mini-MOPA) Doppler velocity data obtained during the Rain in Cumulus over the Ocean (RICO) experiment.

Corresponding author address: Dr. Alan Brewer, NOAA/ESRL/CSD, 325 Broadway, Boulder, CO 80305-3328. Email: alan.brewer@noaa.gov

This article included in the Fifth International Symposium on Tropospheric Profiling (ISTP) special collection.

Abstract

The NOAA/Earth System Research Laboratory (ESRL) has two coherent Doppler lidar systems that have been deployed on board research vessels to obtain data during several experiments. The instruments measure the wind velocity relative to the motion of the lidar; therefore, correction for the motion of the platform is required. This article gives a thorough analysis of the correction for lidar velocity measurements. The analysis is general enough to be applied to Doppler velocity measurements from all monostatic ship- and aircraftborne lidars and radars, and generalization to bistatic systems is achievable. The correction is demonstrated using miniature master-oscillator power-amplifier (mini-MOPA) Doppler velocity data obtained during the Rain in Cumulus over the Ocean (RICO) experiment.

Corresponding author address: Dr. Alan Brewer, NOAA/ESRL/CSD, 325 Broadway, Boulder, CO 80305-3328. Email: alan.brewer@noaa.gov

This article included in the Fifth International Symposium on Tropospheric Profiling (ISTP) special collection.

Save
  • Angevine, W. M., Hare J. E. , Fairall C. W. , Wolfe D. E. , Hill R. J. , Brewer W. A. , and White A. B. , 2006: Structure and formation of the highly stable marine boundary layer over the Gulf of Maine. J. Geophys. Res., 111 .D23S22, doi:10.1029/2006JD007465.

    • Search Google Scholar
    • Export Citation
  • Banta, R., Newsom R. , Lundquist J. , Pichugina Y. , Coulter R. , and Mahrt L. , 2002: Nocturnal low-level jet characteristics over Kansas during CASES-99. Bound.-Layer Meteor., 105 , 221252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R., Pichugina Y. , and Newsom R. , 2003: Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer. J. Atmos. Sci., 60 , 25492555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R., Pichugina Y. , and Brewer W. , 2006: Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet. J. Atmos. Sci., 63 , 27002719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, B. L., Lee W-C. , and Wakimoto R. M. , 2002: Procedures to improve the accuracy of airborne Doppler radar data. J. Atmos. Oceanic Technol., 19 , 322339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and Coauthors, 2004: The EPIC 2001 stratocumulus study. Bull. Amer. Meteor. Soc., 85 , 967977.

  • Brewer, W., Wulfmeyer V. , Hardesty R. , and Rye B. , 1998: Combined wind and water-vapor measurements using the NOAA mini-MOPA Doppler lidar. Proc. 19th Int. Laser Radar Conf., NASA/CP-1998-207671/PT2, Annapolis, MD, NASA, 565–568.

  • Corcoran, R., and Pronk R. , 2003: POS MV model 320 V30 ethernet and SCSI ICD document No. PUBS-ICD-000033 Rev. 1.02. APPLANIX document, 140 pp. [Available from APPLANIX Corp, 85 Leek Crescent, Richmond Hill, ON L4B 3B3, Canada.].

  • Edson, J., Hinton A. , Prada K. , Hare J. , and Fairall C. , 1998: Direct covariance flux estimates from mobile platforms at sea. J. Atmos. Oceanic Technol., 15 , 547562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grund, C., Banta R. , George J. , Howell J. , Post M. , Richter R. , and Weickmann A. , 2001: High-resolution Doppler lidar for boundary layer and cloud research. J. Atmos. Oceanic Technol., 18 , 376393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardesty, R. M., 2002: Doppler Lidar. Academic Press, 432 pp.

  • Heymsfield, G. M., and Coauthors, 1996: The EDOP radar system on the high-altitude NASA ER-2 aircraft. J. Atmos. Oceanic Technol., 13 , 795809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, R., 2005a: Correction of the Doppler velocity of the NOAA Mini-MOPA lidar for ship motions. NOAA Tech. Memo. OAR PSD 308, 17 pp. [Available from the National Technical Information Service, 5282 Port Royal Road, Springfield, VA 22161.].

  • Hill, R., 2005b: Motion compensation for shipborne radars and lidars. NOAA Tech. Memo. OAR PSD 309, 28 pp. [Available from the National Technical Information Service, 5282 Port Royal Road, Springfield, VA 22161.].

  • Law, D., McLaughlin S. , Post M. , Weber B. , Welsh D. , Wolfe D. , and Merritt D. , 2002: An electronically stabilized phased array system for shipborne atmospheric wind profiling. J. Atmos. Oceanic Technol., 19 , 924933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, W-C., Marks F. D. , and Walther C. , 2003: Airborne Doppler radar data analysis workshop. Bull. Amer. Meteor. Soc., 84 , 10631075.

  • Lee, W-C., Dodge P. , Marks F. D. , and Hildebrand P. H. , 1994: Mapping of airborne Doppler radar data. J. Atmos. Oceanic Technol., 11 , 572578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R., and Coauthors, 2007: Rain in (shallow) cumulus over the ocean—The RICO campaign. Bull. Amer. Meteor. Soc., 88 , 19121928.

  • Schulz, E., Sanderson B. , and Bradley E. , 2005: Motion correction for shipborne turbulence sensors. J. Atmos. Oceanic Technol., 22 , 5569.

  • Testud, J., Hildebrand P. , and Lee W. , 1995: A procedure to correct airborne Doppler radars for navigation errors using the echo returned from the earth’s surface. J. Atmos. Oceanic Technol., 12 , 800820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Janjic T. , 2005: Twenty-four-hour observations of the marine boundary layer using shipborne NOAA high-resolution Doppler lidar. J. Appl. Meteor., 44 , 17231744.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 879 293 24
PDF Downloads 395 62 7