Mobile Lidar Profiling of Tropical Aerosols and Clouds

P. C. S. Devara Indian Institute of Tropical Meteorology, Pashan, Pune, India

Search for other papers by P. C. S. Devara in
Current site
Google Scholar
PubMed
Close
,
P. E. Raj Indian Institute of Tropical Meteorology, Pashan, Pune, India

Search for other papers by P. E. Raj in
Current site
Google Scholar
PubMed
Close
,
K. K. Dani Indian Institute of Tropical Meteorology, Pashan, Pune, India

Search for other papers by K. K. Dani in
Current site
Google Scholar
PubMed
Close
,
G. Pandithurai Indian Institute of Tropical Meteorology, Pashan, Pune, India

Search for other papers by G. Pandithurai in
Current site
Google Scholar
PubMed
Close
,
M. C. R. Kalapureddy Indian Institute of Tropical Meteorology, Pashan, Pune, India

Search for other papers by M. C. R. Kalapureddy in
Current site
Google Scholar
PubMed
Close
,
S. M. Sonbawne Indian Institute of Tropical Meteorology, Pashan, Pune, India

Search for other papers by S. M. Sonbawne in
Current site
Google Scholar
PubMed
Close
,
Y. J. Rao Indian Institute of Tropical Meteorology, Pashan, Pune, India

Search for other papers by Y. J. Rao in
Current site
Google Scholar
PubMed
Close
, and
S. K. Saha Indian Institute of Tropical Meteorology, Pashan, Pune, India

Search for other papers by S. K. Saha in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Lidar profiling of atmospheric aerosols and clouds in the lower atmosphere has been in progress at the Indian Institute of Tropical Meteorology (IITM), Pune (18°32′N, 73°52′E, 559 m MSL), India, for more than two decades. To enlarge the scope of these studies, an eye-safe new portable dual polarization micropulse lidar (DPMPL) has been developed and installed at this station. The system utilizes a diode-pumped solid-state (DPSS) neodymium–yttrium–aluminum–garnet (Nd:YAG) laser second harmonic, with either parallel polarization or alternate parallel and perpendicular polarization, as a transmitter and a Schmidt–Cassegrain telescope, with a high-speed detection and data acquisition and processing system, as a receiver. This online system in real-time mode provides backscatter intensity profiles up to about 75 km at every minute in both parallel and perpendicular polarization channels, corresponding to each state of polarization of the transmitted laser radiation. Thus, this versatile lidar system is expected to play a vital role not only in atmospheric aerosol and cloud physics research and environmental monitoring but also in weather and climate modeling studies of the impact of radiative forcing on the earth–atmosphere radiation balance and hydrological cycle. This paper provides a detailed description of Asia’s only lidar facility and presents initial observations of space–time variations of boundary layer structure from experiments carried out during winter 2005/06.

Corresponding author address: Dr. P. C. S. Devara, Indian Institute of Tropical Meteorology, Dr. Homi Bhabha Road, NCL Post Office, Pashan, Pune 411 008, India. Email: devara@tropmet.res.in

This article included in the Fifth International Symposium on Tropospheric Profiling (ISTP) special collection.

Abstract

Lidar profiling of atmospheric aerosols and clouds in the lower atmosphere has been in progress at the Indian Institute of Tropical Meteorology (IITM), Pune (18°32′N, 73°52′E, 559 m MSL), India, for more than two decades. To enlarge the scope of these studies, an eye-safe new portable dual polarization micropulse lidar (DPMPL) has been developed and installed at this station. The system utilizes a diode-pumped solid-state (DPSS) neodymium–yttrium–aluminum–garnet (Nd:YAG) laser second harmonic, with either parallel polarization or alternate parallel and perpendicular polarization, as a transmitter and a Schmidt–Cassegrain telescope, with a high-speed detection and data acquisition and processing system, as a receiver. This online system in real-time mode provides backscatter intensity profiles up to about 75 km at every minute in both parallel and perpendicular polarization channels, corresponding to each state of polarization of the transmitted laser radiation. Thus, this versatile lidar system is expected to play a vital role not only in atmospheric aerosol and cloud physics research and environmental monitoring but also in weather and climate modeling studies of the impact of radiative forcing on the earth–atmosphere radiation balance and hydrological cycle. This paper provides a detailed description of Asia’s only lidar facility and presents initial observations of space–time variations of boundary layer structure from experiments carried out during winter 2005/06.

Corresponding author address: Dr. P. C. S. Devara, Indian Institute of Tropical Meteorology, Dr. Homi Bhabha Road, NCL Post Office, Pashan, Pune 411 008, India. Email: devara@tropmet.res.in

This article included in the Fifth International Symposium on Tropospheric Profiling (ISTP) special collection.

Save
  • Beninston, M., Wolf J. P. , Beniston-Rebetez M. , Kölsch H. J. , Rairoux P. , and Wöste L. , 1990: Use of lidar measurements and numerical models in air pollution research. J. Geophys. Res., 95 , 98799894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodhaine, B. A., Wood N. B. , Dutton E. G. , and Slusser J. R. , 1999: On Rayleigh optical depth calculations. J. Atmos. Oceanic Technol., 16 , 18541861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., and Heintzenberg J. , 1995: Aerosol Forcing of Climate. John Wiley, 416 pp.

  • Devara, P. C. S., and Raj P. E. , 1991: Study of atmospheric aerosols in a terrain-induced nocturnal boundary layer using bistatic lidar. Atmos. Environ., 25A , 655660.

    • Search Google Scholar
    • Export Citation
  • Devara, P. C. S., Maheskumar R. S. , Raj P. E. , Pandithurai G. , and Dani K. K. , 2002: Recent trends in aerosol climatology and air pollution as inferred from multi-year lidar observations over a tropical urban station. Int. J. Climatol., 22 , 435449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Devara, P. C. S., Raj P. E. , Pandithurai G. , Dani K. K. , and Maheskumar R. S. , 2003: Relationship between lidar-based observations of aerosol content and monsoon precipitation over a tropical station, Pune, India. Meteor. Appl., 10 , 253262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernald, F. G., 1984: Analysis of atmospheric lidar observations: Some comments. Appl. Opt., 23 , 652653.

  • Hansen, J., Sato M. , Ruedy R. , Lacis A. , and Oinas V. , 2000: Global warming in the twenty-first century: An alternative scenario. Proc. Natl. Acad. Sci. USA, 97 , 98759880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holm, E. V., 2004: Lidar data applications in numerical weather prediction. Proc. 22nd Int. Laser Radar Conf. (ILRC), Matera, Italy, European Space Agency, 631–634.

  • Houghton, J. T., Ding Y. , Griggs D. J. , Noguer M. , van der Linden P. J. , Dai X. , Maskell K. , and Johnson C. A. , 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Kamineni, R., Krishnamurti T. N. , Ferrare R. A. , Ismail S. , and Browell E. V. , 2003: Impact of high-resolution water vapor cross-sectional data on hurricane forecasting. Geophys. Res. Lett., 30 .1234, doi:10.1029/2002GL016741.

    • Search Google Scholar
    • Export Citation
  • Klett, J. D., 1981: Stable analytical inversion solution for processing lidar returns. Appl. Opt., 20 , 211220.

  • Lenschow, D. H., Stankov B. B. , and Mahrt L. , 1979: The rapid morning boundary layer transition. J. Atmos. Sci., 36 , 21082124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1985: Vertical structure and turbulence in the very stable boundary layer. J. Atmos. Sci., 42 , 23332349.

  • McCormick, M. P., and Coauthors, 1993: Scientific investigations planned for the Lidar In-space Technology Experiment (LITE). Bull. Amer. Meteor. Soc., 74 , 205214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., Travis L. D. , Kahn R. A. , and West R. A. , 1997: Modeling phase functions for dust-like tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids. J. Geophys. Res., 102 , 1683116847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., Cess R. D. , Harrison E. F. , Minnis P. , Barkstrom B. R. , Ahmad E. , and Hartmann D. , 1989: Cloud-radiative forcing and climate change: Results from the Earth Radiation Budget Experiment. Science, 243 , 5763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasi, M. N., 1994: A reference atmosphere for the Indian equatorial zone. Indian J. Radio Space Phys., 23 , 299312.

  • Sasi, M. N., and Sen Gupta K. , 1986: A reference atmosphere for the Indian zone from surface to 80 km. Vikram Sarabhai Space Centre Space Physics Laboratory Scientific Rep. SPL: SR006:85, 85 pp.

  • Sassen, K., 1991a: Aircraft-produced ice particles in a highly supercooled altocumulus cloud. J. Appl. Meteor., 30 , 765775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., 1991b: The polarization lidar technique for cloud research: A review and current assessment. Bull. Amer. Meteor. Soc., 72 , 18481866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schotland, R. M., Sassen K. , and Stone R. J. , 1971: Observations by lidar of linear depolarization ratios by hydrometeors. J. Appl. Meteor., 10 , 10111017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sivakumar, V., Bhavanikumar Y. , Rao P. B. , Mizutani K. , Aoki T. , Yasui M. , and Itabe T. , 2003: Lidar observed characteristics of the tropical cirrus clouds. Radio Sci., 38 .1094, doi:10.1029/2002RS002719.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3868 3528 73
PDF Downloads 141 51 3