Multiple Scattering Effects in Pulsed Radar Systems: An Intercomparison Study

Alessandro Battaglia Meteorological Institute, University of Bonn, Bonn, Germany

Search for other papers by Alessandro Battaglia in
Current site
Google Scholar
PubMed
Close
,
Satoru Kobayashi Applied Materials Inc., Santa Clara, California

Search for other papers by Satoru Kobayashi in
Current site
Google Scholar
PubMed
Close
,
Simone Tanelli Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Simone Tanelli in
Current site
Google Scholar
PubMed
Close
,
Clemens Simmer Meteorological Institute, University of Bonn, Bonn, Germany

Search for other papers by Clemens Simmer in
Current site
Google Scholar
PubMed
Close
, and
Eastwood Im Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Eastwood Im in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this paper, two different numerical methods capable of computing multiple scattering effects in pulsed-radar systems are compared. Both methods are based on the solution of the time-dependent vectorial form of the radiative transfer equation: one exploits the successive order of scattering approximation, the other a forward Monte Carlo technique.

Different benchmark results are presented (including layers of monodisperse spherical water and ice particles), which are of specific interest for W-band spaceborne cloud radars such as CloudSat’s or EarthCARE’s cloud profiling radars. Results demonstrate a good agreement between the two methods. The pros and cons of the two models are discussed, with a particular focus on the validity of the second order of scattering approximation.

Corresponding author address: A. Battaglia, Meteorological Institute, University of Bonn, Auf dem Huegel 20, 53121 Bonn, Germany. Email: batta@uni-bonn.de

Abstract

In this paper, two different numerical methods capable of computing multiple scattering effects in pulsed-radar systems are compared. Both methods are based on the solution of the time-dependent vectorial form of the radiative transfer equation: one exploits the successive order of scattering approximation, the other a forward Monte Carlo technique.

Different benchmark results are presented (including layers of monodisperse spherical water and ice particles), which are of specific interest for W-band spaceborne cloud radars such as CloudSat’s or EarthCARE’s cloud profiling radars. Results demonstrate a good agreement between the two methods. The pros and cons of the two models are discussed, with a particular focus on the validity of the second order of scattering approximation.

Corresponding author address: A. Battaglia, Meteorological Institute, University of Bonn, Auf dem Huegel 20, 53121 Bonn, Germany. Email: batta@uni-bonn.de

Save
  • Battaglia, A., Kummerow C. , Shin D-B. , and Williams C. , 2003: Constraining microwave brightness temperatures by radar brightband observations. J. Atmos. Oceanic Technol., 20 , 856871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battaglia, A., Ajewole M. O. , and Simmer C. , 2005: Multiple scattering effects due to hydrometeors on precipitation radar systems. Geophys. Res. Lett., 32 .L19801, doi:10.1029/2005GL023810.

    • Search Google Scholar
    • Export Citation
  • Battaglia, A., Ajewole M. O. , and Simmer C. , 2006a: Evaluation of radar multiple scattering effects from a GPM perspective. Part I: Model description and validation. J. Appl. Meteor. Climatol., 45 , 16341647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battaglia, A., Ajewole M. O. , and Simmer C. , 2006b: Evaluation of radar multiple scattering effects from a GPM perspective. Part II: Model results. J. Appl. Meteor. Climatol., 45 , 16481664.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battaglia, A., Ajewole M. O. , and Simmer C. , 2007: Evaluation of radar multiple scattering effects in CloudSat configuration. Atmos. Chem. Phys., 7 , 17191730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chuang, C., and Beard K. V. , 1990: A numerical model for the equilibrium shape of electrified raindrops. J. Atmos. Sci., 47 , 13741389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Wolf, D., 1971: Electromagnetic reflection from an extended turbulent medium: Cumulative forward-scatter single-backscatter approximation. IEEE Trans. Antennas Propag., 19 , 254262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ito, S., Kobayashi S. , and Oguchi T. , 2007: Multiple-scattering formulation of pulsed beam waves in hydrometeors and its application to millimeter-wave weather radar. IEEE Geosci. Remote Sens. Lett., 4 , 1317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., Tanelli S. , and Im E. , 2005: Second-order multiple-scattering theory associated with backscattering enhancement for a millimeter wavelength weather radar with a finite beam width. Radio Sci., 40 .RS6015, doi:10.1029/2004RS003219.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., Ito S. , Tanelli S. , Oguchi T. , and Im E. , 2007a: A time-dependent multiple scattering theory for a pulsed radar with a finite beam width. Radio Sci., 42 .RS4001, doi:10.1029/2006RS003555.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., Oguchi T. , Tanelli S. , and Im E. , 2007b: Backscattering enhancement on spheroid-shaped hydrometeors: Considerations in water and ice particles of uniform size, and Marshall–Palmer distributed rains. Radio Sci., 42 .RS2001, doi:10.1029/2006RS003503.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and Stephens G. L. , 2002: An estimation-based precipitation retrieval algorithm for attenuating radars. J. Appl. Meteor., 41 , 272285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebe, H., 1985: An updated model for millimeter wave propagation in moist air. Radio Sci., 20 , 5. 10691089.

  • Marshall, J. S., and Palmer W. M. , 1948: The distribution of raindrops with size. J. Meteor., 5 , 165166.

  • Marzano, F. S., and Ferrauto G. , 2003: Relation between weather radar equation and first-order backscattering theory. Atmos. Chem. Phys., 3 , 813821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marzano, F. S., Roberti L. , Di Michele S. , Mugnai A. , and Tassa A. , 2003: Modeling of apparent radar reflectivity due to convective clouds at attenuating wavelengths. Radio Sci., 38 .1002, doi:10.1029/2002RS002613.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., 1991: Polarization effects in weak localization of light: Calculation of the copolarized and depolarized backscattering enhancement factors. Phys. Rev. B, 44 , 22. 1259712600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., 1992: Enhanced backscattering of polarized light from discrete random media: Calculations in exactly the backscattering direction. J. Opt. Soc. Amer., 9A , 978982.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., and Travis L. D. , 1998: Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. J. Quant. Spectrosc. Radiat. Transfer, 60 , 309324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., Travis L. D. , and Lacis A. A. , 2006: Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering. Cambridge University Press, 478 pp.

    • Search Google Scholar
    • Export Citation
  • Oguchi, T., and Ihara T. , 2006: Computer simulation of enhanced backscattering from randomly distributed spherical scatterers at 30 GHz and comparison with measurement. Radio Sci., 41 .RS6002, doi:10.1029/2006RS003468.

    • Search Google Scholar
    • Export Citation
  • Raynaud, L., Chenerie I. , and Lemorton J. , 2000: Modeling of radiowave scattering in the melting layer of precipitation. IEEE Trans. Geosci. Remote Sens., 38 , 4. 15741584. doi:10.1109/36.851957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsang, L., and Ishimaru A. , 1985: Theory of backscattering enhancement of random discrete isotropic scatterers based on the summation of all ladder and cyclical terms. J. Opt. Soc. Amer., 2A , 13311338.

    • Search Google Scholar
    • Export Citation
  • Tsang, L., and Kong J. A. , 2001: Scattering of Electromagnetic Waves: Advanced Topics. Wiley, 413 pp.

  • Van Albada, M. P., and Lagendijk A. , 1987: Vector character of light in weak localization: Spatial anisotropy in coherent backscattering from a random medium. Phys. Rev. B, 36 , 23532356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Albada, M. P., van der Mark M. , and Lagendijk A. , 1987: Observations of weak localization of light in a finite slab: Anisotropy effects and light path classification. Phys. Rev. Lett., 58 , 361364.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 284 124 3
PDF Downloads 193 91 6