• Battaglia, A., Kummerow C. , Shin D-B. , and Williams C. , 2003: Constraining microwave brightness temperatures by radar brightband observations. J. Atmos. Oceanic Technol., 20 , 856871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battaglia, A., Ajewole M. O. , and Simmer C. , 2005: Multiple scattering effects due to hydrometeors on precipitation radar systems. Geophys. Res. Lett., 32 .L19801, doi:10.1029/2005GL023810.

    • Search Google Scholar
    • Export Citation
  • Battaglia, A., Ajewole M. O. , and Simmer C. , 2006a: Evaluation of radar multiple scattering effects from a GPM perspective. Part I: Model description and validation. J. Appl. Meteor. Climatol., 45 , 16341647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battaglia, A., Ajewole M. O. , and Simmer C. , 2006b: Evaluation of radar multiple scattering effects from a GPM perspective. Part II: Model results. J. Appl. Meteor. Climatol., 45 , 16481664.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battaglia, A., Ajewole M. O. , and Simmer C. , 2007: Evaluation of radar multiple scattering effects in CloudSat configuration. Atmos. Chem. Phys., 7 , 17191730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chuang, C., and Beard K. V. , 1990: A numerical model for the equilibrium shape of electrified raindrops. J. Atmos. Sci., 47 , 13741389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Wolf, D., 1971: Electromagnetic reflection from an extended turbulent medium: Cumulative forward-scatter single-backscatter approximation. IEEE Trans. Antennas Propag., 19 , 254262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ito, S., Kobayashi S. , and Oguchi T. , 2007: Multiple-scattering formulation of pulsed beam waves in hydrometeors and its application to millimeter-wave weather radar. IEEE Geosci. Remote Sens. Lett., 4 , 1317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., Tanelli S. , and Im E. , 2005: Second-order multiple-scattering theory associated with backscattering enhancement for a millimeter wavelength weather radar with a finite beam width. Radio Sci., 40 .RS6015, doi:10.1029/2004RS003219.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., Ito S. , Tanelli S. , Oguchi T. , and Im E. , 2007a: A time-dependent multiple scattering theory for a pulsed radar with a finite beam width. Radio Sci., 42 .RS4001, doi:10.1029/2006RS003555.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., Oguchi T. , Tanelli S. , and Im E. , 2007b: Backscattering enhancement on spheroid-shaped hydrometeors: Considerations in water and ice particles of uniform size, and Marshall–Palmer distributed rains. Radio Sci., 42 .RS2001, doi:10.1029/2006RS003503.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and Stephens G. L. , 2002: An estimation-based precipitation retrieval algorithm for attenuating radars. J. Appl. Meteor., 41 , 272285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebe, H., 1985: An updated model for millimeter wave propagation in moist air. Radio Sci., 20 , 5. 10691089.

  • Marshall, J. S., and Palmer W. M. , 1948: The distribution of raindrops with size. J. Meteor., 5 , 165166.

  • Marzano, F. S., and Ferrauto G. , 2003: Relation between weather radar equation and first-order backscattering theory. Atmos. Chem. Phys., 3 , 813821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marzano, F. S., Roberti L. , Di Michele S. , Mugnai A. , and Tassa A. , 2003: Modeling of apparent radar reflectivity due to convective clouds at attenuating wavelengths. Radio Sci., 38 .1002, doi:10.1029/2002RS002613.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., 1991: Polarization effects in weak localization of light: Calculation of the copolarized and depolarized backscattering enhancement factors. Phys. Rev. B, 44 , 22. 1259712600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., 1992: Enhanced backscattering of polarized light from discrete random media: Calculations in exactly the backscattering direction. J. Opt. Soc. Amer., 9A , 978982.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., and Travis L. D. , 1998: Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. J. Quant. Spectrosc. Radiat. Transfer, 60 , 309324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., Travis L. D. , and Lacis A. A. , 2006: Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering. Cambridge University Press, 478 pp.

    • Search Google Scholar
    • Export Citation
  • Oguchi, T., and Ihara T. , 2006: Computer simulation of enhanced backscattering from randomly distributed spherical scatterers at 30 GHz and comparison with measurement. Radio Sci., 41 .RS6002, doi:10.1029/2006RS003468.

    • Search Google Scholar
    • Export Citation
  • Raynaud, L., Chenerie I. , and Lemorton J. , 2000: Modeling of radiowave scattering in the melting layer of precipitation. IEEE Trans. Geosci. Remote Sens., 38 , 4. 15741584. doi:10.1109/36.851957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsang, L., and Ishimaru A. , 1985: Theory of backscattering enhancement of random discrete isotropic scatterers based on the summation of all ladder and cyclical terms. J. Opt. Soc. Amer., 2A , 13311338.

    • Search Google Scholar
    • Export Citation
  • Tsang, L., and Kong J. A. , 2001: Scattering of Electromagnetic Waves: Advanced Topics. Wiley, 413 pp.

  • Van Albada, M. P., and Lagendijk A. , 1987: Vector character of light in weak localization: Spatial anisotropy in coherent backscattering from a random medium. Phys. Rev. B, 36 , 23532356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Albada, M. P., van der Mark M. , and Lagendijk A. , 1987: Observations of weak localization of light in a finite slab: Anisotropy effects and light path classification. Phys. Rev. Lett., 58 , 361364.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 92 44 2
PDF Downloads 60 37 0

Multiple Scattering Effects in Pulsed Radar Systems: An Intercomparison Study

View More View Less
  • 1 Meteorological Institute, University of Bonn, Bonn, Germany
  • | 2 Applied Materials Inc., Santa Clara, California
  • | 3 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 4 Meteorological Institute, University of Bonn, Bonn, Germany
  • | 5 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
Restricted access

Abstract

In this paper, two different numerical methods capable of computing multiple scattering effects in pulsed-radar systems are compared. Both methods are based on the solution of the time-dependent vectorial form of the radiative transfer equation: one exploits the successive order of scattering approximation, the other a forward Monte Carlo technique.

Different benchmark results are presented (including layers of monodisperse spherical water and ice particles), which are of specific interest for W-band spaceborne cloud radars such as CloudSat’s or EarthCARE’s cloud profiling radars. Results demonstrate a good agreement between the two methods. The pros and cons of the two models are discussed, with a particular focus on the validity of the second order of scattering approximation.

Corresponding author address: A. Battaglia, Meteorological Institute, University of Bonn, Auf dem Huegel 20, 53121 Bonn, Germany. Email: batta@uni-bonn.de

Abstract

In this paper, two different numerical methods capable of computing multiple scattering effects in pulsed-radar systems are compared. Both methods are based on the solution of the time-dependent vectorial form of the radiative transfer equation: one exploits the successive order of scattering approximation, the other a forward Monte Carlo technique.

Different benchmark results are presented (including layers of monodisperse spherical water and ice particles), which are of specific interest for W-band spaceborne cloud radars such as CloudSat’s or EarthCARE’s cloud profiling radars. Results demonstrate a good agreement between the two methods. The pros and cons of the two models are discussed, with a particular focus on the validity of the second order of scattering approximation.

Corresponding author address: A. Battaglia, Meteorological Institute, University of Bonn, Auf dem Huegel 20, 53121 Bonn, Germany. Email: batta@uni-bonn.de

Save