• Bakwin, P. S., Tans P. P. , Hurst D. F. , and Zhao C. , 1998: Measurements of carbon dioxide on very tall towers: Results of the NOAA/CMDL program. Tellus, 50B , 401415.

    • Search Google Scholar
    • Export Citation
  • Bakwin, P. S., Tans P. P. , Stephens B. B. , Wofsy S. C. , Gerbig C. , and Grainger A. , 2003: Strategies for measurement of atmospheric column means of carbon dioxide from aircraft using discrete sampling. J. Geophys. Res., 108 .4514, doi:10.1029/2002JD003306.

    • Search Google Scholar
    • Export Citation
  • Braud, H., Bousquet P. , Ramonet M. , Sarda R. , and Ciais P. , 2004: CO/CO2 ratio in urban atmosphere: Example of the agglomeration of Paris, France. Institut Pierre et Simon Laplace Notes des Activités Instrumentales 42, 11 pp.

  • Bruneau, D., Le Rille O. , Pelon J. , and Flamant P. H. , 1997: Development of 2-μm coherent lidar emitter with transform-limited pulse output for wind and water-vapor measurements. Proc. Ninth Coherent Laser Radar Conf., Linköping, Sweden, Swedish Defence Research Establishment (FOA), 54–57.

  • Bruneau, D., Delmonte S. , and Pelon J. , 2000: Wind velocity and backscatter measurements at 2-μm with the heterodyne detection lidar EMIL. Proc. 20th Int. Laser Radar Conf., Vichy, France, École Polytechnique, 97–100.

  • Bruneau, D., Gibert F. , Flamant P. H. , and Pelon J. , 2006: A complementary study of DIAL optimization in direct and heterodyne detections. Appl. Opt., 45 , 48984908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conway, T. J., Tans P. P. , Waterman L. S. , and Thoning K. W. , 1994: Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration Climate Monitoring and Diagnostics Laboratory Global Air-Sampling Network. J. Geophys. Res., 99 , D11. 2283122855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crisp, D., and Coauthors, 2004: The Orbiting Carbon Observatory (OCO) mission. Adv. Space Res., 34 , 700709.

  • D’Almeida, G. A., Koepke P. , and Shettle E. P. , 1991: Atmospheric Aerosols: Global Climatology and Radiative Characteristics. A. Deepak, 561 pp.

    • Search Google Scholar
    • Export Citation
  • Dubovik, O., and King M. D. , 2000: A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res., 105 , 2067320696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flamant, P. H., and Coauthors, 2005: FACTS: Future Atmospheric Carbon dioxide Testing from Space. European Space Agency Final Rep. 1/3, 223 pp.

  • Gibert, F., Flamant P. H. , Bruneau D. , and Loth C. , 2006: 2-μm heterodyne differential absorption lidar measurements of atmospheric CO2 mixing ratio in the boundary layer. Appl. Opt., 45 , 44484458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibert, F., Cuesta J. , Yano J-I. , Arnault N. , and Flamant P. H. , 2007a: On the correlation between convective plume updrafts and downdrafts, lidar reflectivity and depolarization ratio. Bound.-Layer Meteor., 125 , 575578.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibert, F., Marnas F. , Edouart D. , and Flamant P. H. , 2007b: An a posteriori method based on photo-acoustic cell information to correct for lidar transmitter spectral shift. Application to atmospheric CO2 DIAL measurements. Appl. Spectrosc., 61 , 10681075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibert, F., Schmidt M. , Cuesta J. , Larmanou E. , Ramonet M. , Flamant P. H. , Xueref I. , and Ciais P. , 2007c: Retrieval of average CO2 fluxes by combining in-situ CO2 measurements and backscatter lidar information. J. Geophys. Res., 112 .D10301, doi:10.1029/2006JD008190.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., Dudhia J. , and Stauffer D. R. , 1995: A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). NCAR Tech. Note, NCAR/TN-398+STR, 121 pp.

  • Hänel, G., 1976: The properties of atmospheric aerosol particles as functions of the relative humidity at the thermodynamic equilibrium with the surrounding moist air. Advances in Geophysics, Vol. 19, Academic Press, 73–188.

    • Search Google Scholar
    • Export Citation
  • Henderson, S. W., Yuen E. Y. , and Fry E. S. , 1986: Fast resonance detection technique for single-frequency operation of injection seeded Nd:YAG lasers. Opt. Lett., 11 , 715717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and Coauthors, 1998: AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66 , 116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houghton, J. T., Ding Y. , Griggs D. J. , Noguer M. , van der Linden P. J. , Dai X. , Maskell K. , and Johnson C. A. , 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

    • Search Google Scholar
    • Export Citation
  • Hurwitz, M. D., Ricciuto D. M. , Bakwin P. S. , Davis K. J. , Wang W. , Yi C. , and Butler M. P. , 2004: Transport of carbon dioxide in the presence of storm system over a northern Wisconsin forest. J. Atmos. Sci., 61 , 607618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Idso, S. B., Idso C. D. , and Balling R. C. Jr., 2002: Seasonal and diurnal variations of near-surface atmospheric CO2 concentration within a residential sector of the urban CO2 dome of Phoenix, AZ, USA. Atmos. Environ., 36 , 16551660.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, G., 2005: The greenhouse gases monitoring in-situ and from space (GOSAT). Proc. 13th Coherent Laser Radar Conf., Kamakura, Japan, National Institute of Information and Communications Technology, 101–104.

  • Killinger, D. K., and Menyuk N. , 1981: Remote probing of the atmosphere using a CO2 DIAL system. IEEE J. Quantum Electron., 9 , 19171929.

    • Search Google Scholar
    • Export Citation
  • Koch, G. J., and Coauthors, 2004: Coherent differential absorption lidar measurements of CO2. Appl. Opt., 43 , 50925099.

  • Lambert, G., Monfray P. , Ardouin B. , Bonsang G. , Gaudry A. , Kazan V. , and Polian G. , 1995: Year-to-year changes in atmospheric CO2. Tellus, 47B , 5355.

    • Search Google Scholar
    • Export Citation
  • Liou, K-N., 1981: Some aspects of the optical properties of ice clouds. Clouds: Their Formation, Optical Properties, and Effects, P. V. Hobbs and A. Deepak, Eds., Academic Press, 497 pp.

    • Search Google Scholar
    • Export Citation
  • Lloyd, J., and Coauthors, 2001: Vertical profiles, boundary layer budgets, and regional flux estimates for CO2 and its 13C/12C ratio and for water vapour above a forest/bog mosaic in central Siberia. Global Biogeochem. Cycles, 15 , 267284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsueda, H., and Inoue H. , 1996: Measurements of atmospheric CO2 and CH4 using a commercial airliner from 1993 to 1994. Atmos. Environ., 30 , 16471655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mätzler, C., 2002: MATLAB functions for Mie scattering and absorption, version 2. IAP Research Rep., 11 pp.

  • Megie, G., and Menzies R. T. , 1980: Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species. Appl. Opt., 19 , 1173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pépin, L., Schmidt M. , Ramonet M. , Worthy D. , and Ciais P. , 2002: A new gas chromatographic experiment to analyze greenhouse gases in flask samples and in ambient air in the region of Saclay. Instrumental Notes of IPSL 13, 27 pp.

  • Randriamiarisoa, H., Chazette P. , Couvert P. , and Sanak J. , 2005: Relative humidity impact on aerosol parameters in a Paris suburban area. Atmos. Chem. Phys. Discuss., 5 , 80918147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, P. J., and O’Brien D. M. , 2001: The utility of remotely sensed CO2 concentration data in surface source inversions. Geophys. Res. Lett., 28 , 175178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Regalia-Jarlot, L., Zéninari V. , Parvitte B. , Grossel A. , Thomas X. , von der Heyden P. , and Durry G. , 2006: A complete study of the line intensities of four bands of CO2 around 1.6 and 2.0 μm: A comparison between Fourier transform and diode laser measurements. J. Quant. Spectrosc. Radiat. Transfer, 101 , 325338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Remsberg, E., and Gordley L. , 1978: Analysis of differential absorption lidar from the space shuttle. Appl. Opt., 17 , 624630.

  • Rothman, L. S., and Coauthors, 1998: The HITRAN molecular spectroscopic database, and HAWKS (HITRAN Atmospheric Workstation): 1996 edition. J. Quant. Spectrosc. Radiat. Transfer, 60 , 665710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rye, B. J., and Hardesty R. M. , 1993: Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I: Spectral accumulation and the Cramer-Rao lower bound. IEEE Trans. Geosci. Remote Sens., 31 , 1627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rye, B. J., and Hardesty R. M. , 1997: Estimate optimization parameters for incoherent backscatter heterodyne lidar. Appl. Opt., 36 , 94259436.

  • Schmitgen, S., Ciais P. , Geiss H. , Kley D. , Voz-Thomas A. , Neiniger B. , Baeumle M. , and Brunet Y. , 2004: Carbon dioxide uptake of a forested region in southwest France derived from airborne CO2 and CO observations in a Lagrangian budget approach. J. Geophys. Res., 109 .D14302, doi:10.1029/2003JD004335.

    • Search Google Scholar
    • Export Citation
  • Stephens, B. B., and Coauthors, 2007: Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science, 316 , 17321735. doi:10.1126/science.1137004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tonna, G., 1991: Backscattering, extinction, and liquid water content in fog: A detailed study of their relations for use in lidar systems. Appl. Opt., 30 , 11321140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J-W., Denning A. S. , Lu L. , Baker I. T. , Corbin K. D. , and Davis K. J. , 2007: Observations and simulations of synoptic, regional, and local variations in atmospheric CO2. J. Geophys. Res., 112 .D04108, doi:10.1029/2006JD007410.

    • Search Google Scholar
    • Export Citation
  • Worthy, D. E. J., Levin I. , Trivett N. B. A. , Kuhlmann A. J. , Hopper J. F. , and Ernst M. K. , 1998: Seven years of continuous methane observations at a remote boreal site in Ontario, Canada. J. Geophys. Res., 103 , D13. 1599516007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yi, C., Davis K. J. , Bakwin P. S. , Denning A. S. , Zhang N. , Desai A. , Lin J. C. , and Gerbig C. , 2004: Observed covariance between ecosystem carbon exchange and atmospheric boundary layer dynamics at a site in northern Wisconsin. J. Geophys. Res., 109 .D08302, doi:10.1029/2003JD004164.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 153 69 7
PDF Downloads 106 60 8

Vertical 2-μm Heterodyne Differential Absorption Lidar Measurements of Mean CO2 Mixing Ratio in the Troposphere

View More View Less
  • 1 Laboratoire de Météorologie Dynamique, École Polytechnique, Institut Pierre-Simon Laplace, Palaiseau, France
  • | 2 Service d’Aéronomie, Université Pierre et Marie Curie, Institut Pierre-Simon Laplace, Paris, France
Restricted access

Abstract

Vertical mean CO2 mixing ratio measurements are reported in the atmospheric boundary layer (ABL) and in the lower free troposphere (FT), using a 2-μm heterodyne differential absorption lidar (HDIAL). The mean CO2 mixing ratio in the ABL is determined using 1) aerosol backscatter signal and a mean derivative of the increasing optical depth as a function of altitude and 2) optical depth measurements from cloud target returns. For a 1-km vertical long path in the ABL, 2% measurement precision with a time resolution of 30 min is demonstrated for the retrieved mean CO2 absorption. Spectroscopic calculations are reported in details using new spectroscopic data in the 2-μm domain and the outputs of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5). Then, using both aerosols in the ABL and midaltitude dense clouds in the free troposphere, preliminary HDIAL measurements of mean CO2 mixing ratio in the free troposphere are also presented. The 2-μm HDIAL vertical measurements are compared to ground-based and airborne in situ CO2 mixing ratio measurements and discussed with the atmospheric synoptic conditions.

* Current affiliation: Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania.

Corresponding author address: Fabien Gibert, Department of Meteorology, The Pennsylvania State University, 415 Walker Building, University Park, PA 16802. Email: fabien.gibert@meteo.psu.edu

Abstract

Vertical mean CO2 mixing ratio measurements are reported in the atmospheric boundary layer (ABL) and in the lower free troposphere (FT), using a 2-μm heterodyne differential absorption lidar (HDIAL). The mean CO2 mixing ratio in the ABL is determined using 1) aerosol backscatter signal and a mean derivative of the increasing optical depth as a function of altitude and 2) optical depth measurements from cloud target returns. For a 1-km vertical long path in the ABL, 2% measurement precision with a time resolution of 30 min is demonstrated for the retrieved mean CO2 absorption. Spectroscopic calculations are reported in details using new spectroscopic data in the 2-μm domain and the outputs of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5). Then, using both aerosols in the ABL and midaltitude dense clouds in the free troposphere, preliminary HDIAL measurements of mean CO2 mixing ratio in the free troposphere are also presented. The 2-μm HDIAL vertical measurements are compared to ground-based and airborne in situ CO2 mixing ratio measurements and discussed with the atmospheric synoptic conditions.

* Current affiliation: Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania.

Corresponding author address: Fabien Gibert, Department of Meteorology, The Pennsylvania State University, 415 Walker Building, University Park, PA 16802. Email: fabien.gibert@meteo.psu.edu

Save