The Inverse Ocean Modeling System. Part II: Applications

J. C. Muccino Department of Civil and Environmental Engineering, Arizona State University, Tempe, Arizona

Search for other papers by J. C. Muccino in
Current site
Google Scholar
PubMed
Close
,
H. Luo Department of Civil and Environmental Engineering, Arizona State University, Tempe, Arizona

Search for other papers by H. Luo in
Current site
Google Scholar
PubMed
Close
,
H. G. Arango Institute of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by H. G. Arango in
Current site
Google Scholar
PubMed
Close
,
D. Haidvogel Institute of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by D. Haidvogel in
Current site
Google Scholar
PubMed
Close
,
J. C. Levin Institute of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by J. C. Levin in
Current site
Google Scholar
PubMed
Close
,
A. F. Bennett College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by A. F. Bennett in
Current site
Google Scholar
PubMed
Close
,
B. S. Chua College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by B. S. Chua in
Current site
Google Scholar
PubMed
Close
,
G. D. Egbert College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by G. D. Egbert in
Current site
Google Scholar
PubMed
Close
,
B. D. Cornuelle Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by B. D. Cornuelle in
Current site
Google Scholar
PubMed
Close
,
A. J. Miller Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by A. J. Miller in
Current site
Google Scholar
PubMed
Close
,
E. Di Lorenzo School of Earth and Atmospheric Science, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by E. Di Lorenzo in
Current site
Google Scholar
PubMed
Close
,
A. M. Moore Department of Ocean Sciences, University of California, Santa Cruz, Santa Cruz, California

Search for other papers by A. M. Moore in
Current site
Google Scholar
PubMed
Close
, and
E. D. Zaron College of Civil and Environmental Engineering, Portland State University, Portland, Oregon

Search for other papers by E. D. Zaron in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Inverse Ocean Modeling (IOM) System is a modular system for constructing and running weak-constraint four-dimensional variational data assimilation (W4DVAR) for any linear or nonlinear functionally smooth dynamical model and observing array. The IOM has been applied to four ocean models with widely varying characteristics. The Primitive Equations Z-coordinate-Harmonic Analysis of Tides (PEZ-HAT) and the Regional Ocean Modeling System (ROMS) are three-dimensional, primitive equations models while the Advanced Circulation model in 2D (ADCIRC-2D) and Spectral Element Ocean Model in 2D (SEOM-2D) are shallow-water models belonging to the general finite-element family. These models, in conjunction with the IOM, have been used to investigate a wide variety of scientific phenomena including tidal, mesoscale, and wind-driven circulation. In all cases, the assimilation of data using the IOM provides a better estimate of the ocean state than the model alone.

Corresponding author address: J. Muccino, Department of Civil and Environmental Engineering, P.O. Box 875306, Arizona State University, Tempe, AZ 85287-5306. Email: jmuccino@asu.edu

Abstract

The Inverse Ocean Modeling (IOM) System is a modular system for constructing and running weak-constraint four-dimensional variational data assimilation (W4DVAR) for any linear or nonlinear functionally smooth dynamical model and observing array. The IOM has been applied to four ocean models with widely varying characteristics. The Primitive Equations Z-coordinate-Harmonic Analysis of Tides (PEZ-HAT) and the Regional Ocean Modeling System (ROMS) are three-dimensional, primitive equations models while the Advanced Circulation model in 2D (ADCIRC-2D) and Spectral Element Ocean Model in 2D (SEOM-2D) are shallow-water models belonging to the general finite-element family. These models, in conjunction with the IOM, have been used to investigate a wide variety of scientific phenomena including tidal, mesoscale, and wind-driven circulation. In all cases, the assimilation of data using the IOM provides a better estimate of the ocean state than the model alone.

Corresponding author address: J. Muccino, Department of Civil and Environmental Engineering, P.O. Box 875306, Arizona State University, Tempe, AZ 85287-5306. Email: jmuccino@asu.edu

Save
  • Bennett, A. F., 2002: Inverse Modeling of the Ocean and Atmosphere. Cambridge University Press, 234 pp.

  • Bennett, A. F., Chua B. S. , Pflaum B. L. , Erwig M. , Fu Z. , Loft R. D. , and Muccino J. C. , 2006: Inverse Ocean Modeling System user manual. IOM Tech. Doc. 6, 221 pp. [Available online at ftp://ftp.coas.oregonstate.edu/dist/chua/iom/tech_doc/IOM_TD6.pdf.].

  • Bennett, A. F., Chua B. , Pflaum B. , Erwig M. , Fu Z. , Loft R. , and Muccino J. , 2008: The Inverse Ocean Modeling System. Part I: Implementation. J. Atmos. Oceanic Technol., 25 , 16081622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, K., and Cox M. D. , 1968: A nonlinear model of an ocean driven by wind and differential heating. Part I: Description of the three-dimensional velocity and density fields. J. Atmos. Sci., 25 , 945967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chua, B. S., and Bennett A. F. , 2001: An inverse ocean modeling system. Ocean Modell., 3 , 137165.

  • Curchitser, E. N., Iskandarani M. , and Haidvogel D. B. , 1998: A spectral element solution of the shallow water equations on multiprocessor computers. J. Atmos. Oceanic Technol., 15 , 510521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curchitser, E. N., Haidvogel D. , and Iskandarani M. , 1999: On the transient adjustment of a mid-latitude abyssal ocean basin with realistic geometry: The constant depth limit. Dyn. Atmos. Oceans, 29 , 147188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, G., and Rew R. , 1990: NetCDF: An interface for scientific data access. IEEE Comput. Graph. Appl., 10 , 7682.

  • Di Lorenzo, E., Moore A. M. , Arango H. G. , Cornuelle B. D. , Miller A. J. , Powell B. , Chua B. S. , and Bennett A. F. , 2007: Weak and strong constraint data assimilation in the inverse Regional Ocean Modeling System (ROMS): Development and application for a baroclinic coastal upwelling system. Ocean Modell., 16 , 160187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duffy, B., 2005: Anatomy of a disaster: 5 days that changed a nation. Saturday, August 27. US News World Rep., 139 , 2443.

  • Gent, P. R., and McWilliams J. C. , 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20 , 150155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giering, R., and Kaminski T. , 1998: Recipes for adjoint code construction. ACM Trans. Math. Software, 24 , 437474.

  • Haidvogel, D. B., and Beckmann A. , 1999: Numerical Ocean Circulation Modeling. Imperial College Press, 300 pp.

  • Haidvogel, D. B., McWilliams J. C. , and Gent P. R. , 1992: Boundary current separation in a quasigeostrophic, eddy-resolving ocean circulation model. J. Phys. Oceanogr., 22 , 882902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, W. R., 1978: The role of mesoscale eddies in the general circulation of the ocean—Numerical experiments using a wind-driven quasi-geostrophic model. J. Phys. Oceanogr., 8 , 363392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iskandarani, M., Haidvogel D. B. , and Boyd J. P. , 1995: A staggered spectral element model with application to the oceanic shallow water equations. Int. J. Numer. Methods Fluids, 20 , 393414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iskandarani, M., Haidvogel D. B. , and Levin J. G. , 2003: A three-dimentional spectral element model for the solution of hydrostatic primitive equations. J. Comput. Phys., 186 , 397425.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., Stainforth D. , Webb D. J. , and Paterson S. M. , 1991: The development of a free-surface Bryan–Cox–Semtner ocean model. J. Phys. Oceanogr., 21 , 13331348.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinnmark, I., 1986: The Shallow Water Wave Equations: Formulation, Analysis and Application. Vol. 15, Lecture Notes in Engineering, Springer-Verlag, 187 pp.

    • Search Google Scholar
    • Export Citation
  • Kolar, R. L., Gray W. G. , Westerink J. J. , and Luettich R. A. , 1994: Shallow water modeling in spherical coordinates: Equation formulation, numerical implementation, and application. J. Hydraul. Res., 32 , 324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., McWilliams J. C. , and Doney S. , 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32 , 363403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leidner, S. M., Isaksen L. , and Hoffman R. N. , 2003: Impact of NSCAT winds on tropical cyclones in the ECMWF 4DVAR assimilation system. Mon. Wea. Rev., 131 , 326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levin, J. C., Iskandarani M. , and Haidvogel D. B. , 1997: A spectral filtering procedure for eddy-resolving simulations with a spectral element ocean model. J. Comput. Phys., 137 , 130154.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levin, J. C., Haidvogel D. B. , Chua B. , Bennett A. F. , and Iskandarani M. , 2006: Euler–Lagrange equations for the spectral element shallow water system. Ocean Modell., 12 , 348377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luettich, R. A., and Westerink J. J. , 2000: ADCIRC: A (parallel) advanced circulation model for oceanic, coastal, and estuarine waters: Consolidated and updated theory and users manual. [Available online at http://adcirc.org/.].

  • Luettich, R. A., Westerink J. J. , and Scheffner N. W. , 1991: ADCIRC: An advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report 1: Theory and methodology of ADCIRC-2DDI and ADCIRC-3DL. Dredging Research Program Tech. Rep. DRP-92–6, 143 pp.

  • Lynch, D. R., and Gray W. G. , 1979: A wave equation model for finite element tidal computations. Comput. Fluids, 7 , 207228.

  • Lyzenga, G., and Parker J. , 2006: GeoFEST: Geophysical finite element simulation tool. Caltech/Jet Propulsion Laboratory. [Available online at http://www.openchannelfoundation.org/projects/GeoFEST.].

  • Marotzke, J., Giering R. , Zhang K. Q. , Stammer D. , Hill C. , and Lee T. , 1999: Construction of the adjoint MIT ocean general circulation model and application to Atlantic heat transport sensitivity. J. Geophys. Res., 104 , 2952929547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCalpin, J. D., and Haidvogel D. B. , 1996: Phenomenology of the low-frequency variability in a reduced-gravity, quasigeostrophic double-gyre model. J. Phys. Oceanogr., 26 , 739752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, A. M., Arango H. G. , Di Lorenzo E. , Cornuelle B. D. , Miller A. J. , and Neilson D. J. , 2004: A comprehensive ocean prediction and analysis system based on the tangent linear and adjoint of a regional ocean model. Ocean Modell., 7 , 227258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muccino, J. C., and Luo H. , 2005: Picard iterations for a finite element shallow water equation model. Ocean Modell., 10 , 316341.

  • Muccino, J. C., Bennett A. F. , and Hubele N. F. , 2004: Significance testing for variational assimilation. Quart. J. Roy. Meteor. Soc., 130 , 18151838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and Gnanadesikan A. , 1998: Transient response in a z-level ocean model that resolves topography with partial cells. Mon. Wea. Rev., 126 , 32483270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purser, R. J., Wu W-S. , Parrish D. F. , and Roberts N. M. , 2003: Numerical aspects of the application of recursive filters to variational statistical analysis. Part II: Spatially inhomogeneous and anisotropic general covariances. Mon. Wea. Rev., 131 , 15361548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandwell, D. T., and Smith W. H. F. , 1997: Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. J. Geophys. Res., 102 , 1003910054.

  • Shchepetkin, A. F., and McWilliams J. C. , 2003: A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate. J. Geophys. Res., 108 .3090, doi:10.1029/2001JC001047.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and McWilliams J. C. , 2005: The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following coordinate oceanic model. Ocean Modell., 9 , 347404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., and Coauthors, 2003: Volume, heat, and freshwater transports of the global ocean circulation 1993–2000, estimated from a general circulation model constrained by World Ocean Circulation Experiment (WOCE) data. J. Geophys. Res., 108 .3007, doi:10.1029/2001JC001115.

    • Search Google Scholar
    • Export Citation
  • Travis, J., 2005: Scientists’ fears come true as hurricane floods New Orleans. Science, 309 , 16561658.

  • Warner, J. C., Sherwood C. R. , Arango H. G. , Signell R. P. , and Butman B. , 2005: Performance of four turbulence closure models implemented using a generic length scale method. Ocean Modell., 8 , 81113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, A., and Courtier P. , 2001: Correlation modelling on the sphere using a generalized diffusion equation. Quart. J. Roy. Meteor. Soc., 127 , 18151846.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., Haidvogel D. B. , Iskandarani M. , and Hughes R. , 1997: Dynamics of the long-period tides. Prog. Oceanogr., 40 , 81108.

  • Zaron, E. D., 2006: A comparison of data assimilation methods using a planetary geostrophic model. Mon. Wea. Rev., 134 , 13161328.

  • Zaron, E. D., and Egbert G. D. , 2006: Verification studies for a z-coordinate primitive-equation model: Tidal conversion at a mid-ocean ridge. Ocean Modell., 14 , 257278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., and Egbert G. D. , 2007: The impact of the M2 internal tide on data-assimilative model estimates of the surface tide. Ocean Modell., 18 , 210216. doi:10.1016/j.ocemod.2007.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 457 251 32
PDF Downloads 170 46 2