• Battjes, J., 1974: Surf similarity. Proc. 14th Conf. on Coastal Engineering, Copenhagen, Denmark, American Society of Civil Engineers, 466–480.

    • Crossref
    • Export Citation
  • Brock, J., Wright C. , Sallenger A. , Krabill W. , and Swift R. , 2002: Basis and methods of NASA Airborne Topographic Mapper lidar surveys for coastal studies. J. Coastal Res., 18 , 113.

    • Search Google Scholar
    • Export Citation
  • Gares, P., Wang Y. , and White S. , 2006: Using LIDAR to monitor a beach nourishment project at Wrightsville Beach, North Carolina, USA. J. Coastal Res., 22 , 12061219.

    • Search Google Scholar
    • Export Citation
  • Guenther, G., Cunningham A. , LaRocque P. , and Reid D. , 2000: Meeting the accuracy challenge in airborne lidar bathymetry. Proc. 20th EARSeL Symp.: Workshop on Lidar Remote Sensing of Land and Sea, Dresden, Germany, European Association of Remote Sensing Laboratories, 1.

    • Search Google Scholar
    • Export Citation
  • Holman, R., 1986: Extreme value statistics for wave run-up on a natural beach. Coastal Eng., 9 , 527544.

  • Krabill, W., and Coauthors, 2000: Airborne laser mapping of Assateague National Seashore Beach. Photogramm. Eng. Remote Sens., 66 , 6571.

    • Search Google Scholar
    • Export Citation
  • Mobley, C., 1994: Light and Water: Radiative Transfer in Natural Waters. Academic Press, 592 pp.

  • Morton, R., Leach M. , Paine J. , and Cardoza M. , 1993: Monitoring beach changes using GPS surveying techniques. J. Coastal Res., 9 , 702720.

    • Search Google Scholar
    • Export Citation
  • Raubenheimer, B., Guza R. , and Elgar S. , 2001: Field observations of wave-driven setdown and setup. J. Geophys. Res., 106 , 46294638.

  • Revell, D., Komar P. , and Sallenger A. , 2002: An application of LIDAR to analyses of El Niño erosion in the Netarts littoral cell, Oregon. J. Coastal Res., 18 , 792801.

    • Search Google Scholar
    • Export Citation
  • Robertson, W., Zhang K. , and Whitman D. , 2007: Hurricane-induced beach change derived from airborne laser measurements near Panama City, Florida. Mar. Geol., 237 , 191205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruggiero, P., Komar P. , McDougal W. , Marra J. , and Beach R. , 2001: Wave runup, extreme water levels and the erosion of properties backing beaches. J. Coastal Res., 17 , 407419.

    • Search Google Scholar
    • Export Citation
  • Sallenger, A., Krabill W. , Brock J. , Swift R. , Manizade S. , and Stockdon H. , 2002: Sea-cliff erosion as a function of beach changes and extreme wave runup during the 1997–1998 El Niño. Mar. Geol., 187 , 279297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallenger, A., and Coauthors, 2003: Evaluation of airborne topographic lidar for quantifying beach changes. J. Coastal Res., 19 , 125133.

    • Search Google Scholar
    • Export Citation
  • Saye, S., van der Wal D. , Pye K. , and Blott S. , 2005: Beach-dune morphological relationships and erosion/accretion: An investigation at five sites in England and Wales using LIDAR data. Geomorphology, 72 , 128155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seymour, R., Guza R. , O’Reilly W. , and Elgar S. , 2005: Rapid erosion of a small southern California beach fill. Coastal Eng., 52 , 151158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shrestha, R., Carter W. , Sartori M. , Luzum B. , and Slatton K. , 2005: Airborne laser swath mapping: Quantifying changes in sandy beaches over time scales of weeks to years. Photogramm. Eng. Remote Sens., 59 , 222232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stockdon, H., Sallenger A. , List J. , and Holman R. , 2002: Estimation of shoreline position and change using airborne topographic lidar data. J. Coastal Res., 18 , 502513.

    • Search Google Scholar
    • Export Citation
  • Stockdon, H., Holman R. , Howd P. , and Sallenger A. , 2006: Empirical parameterization of setup, swash, and runup. Coastal Eng., 53 , 573588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomson, J., Elgar S. , Raubenheimer B. , Herbers T. , and Guza R. , 2006: Tidal modulation of infragravity wave via nonlinear energy losses in the surfzone. Geophys. Res. Lett., 33 .L05601, doi:10.1029/2005GL025514.

    • Search Google Scholar
    • Export Citation
  • Wehr, A., and Lohr U. , 1999: Airborne laser scanning—an introduction and overview. Photogramm. Eng. Remote Sens., 54 , 6882.

  • Woolard, J., and Colby J. , 2002: Spatial characterization, resolution, and volumetric change of coastal dunes using airborne LIDAR: Cape Hatteras, North Carolina. Geomorphology, 48 , 269287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, A., and Ashford S. , 2006: Application of airborne LIDAR for seacliff volumetric change and beach-sediment budget contributions. J. Coastal Res., 22 , 307318.

    • Search Google Scholar
    • Export Citation
  • Zhang, K., Whitman D. , Leatherman S. , and Robertson W. , 2005: Quantification of beach changes caused by Hurricane Floyd along Florida’s Atlantic Coast using airborne laser surveys. J. Coastal Res., 21 , 123134.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 109 54 4
PDF Downloads 81 42 1

A Technique for Eliminating Water Returns from Lidar Beach Elevation Surveys

View More View Less
  • 1 Scripps Institution of Oceanography, La Jolla, California
  • | 2 The University of Texas at Austin, Austin, Texas
  • | 3 Scripps Institution of Oceanography, La Jolla, California
Restricted access

Abstract

Airborne light detecting and ranging (lidar) systems can survey hundreds of kilometers of shoreline with high spatial resolution (several elevation estimates per square meter). Sequential surveys yield spatial change maps of beach and dune sand levels. However, lidar data include elevations of the exposed, subaerial beach and, seaward of the waterline, the ocean surface. Here, a simple method is developed to find the waterline and eliminate returns from the ocean surface. A vertical elevation cutoff is used, with the waterline elevation (W) above the known tide level because of the superelevation from wave setup and runup. During each lidar pass, the elevation cutoff (W) is assumed proportional (C) to the offshore significant wave height Hs. Comparison of in situ and lidar surveys on a moderately sloped, dissipative California beach yields C ≈ 0.4, which is qualitatively consistent with existing observations of runup and setup. The calibrated method rejects ocean surface data, while retaining subaerial beach points more than 70 m seaward of the mean high waterline, which is often used as a conservative default waterline.

Corresponding author address: Marissa L. Yates, Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA 92093. Email: myates@coast.ucsd.edu

Abstract

Airborne light detecting and ranging (lidar) systems can survey hundreds of kilometers of shoreline with high spatial resolution (several elevation estimates per square meter). Sequential surveys yield spatial change maps of beach and dune sand levels. However, lidar data include elevations of the exposed, subaerial beach and, seaward of the waterline, the ocean surface. Here, a simple method is developed to find the waterline and eliminate returns from the ocean surface. A vertical elevation cutoff is used, with the waterline elevation (W) above the known tide level because of the superelevation from wave setup and runup. During each lidar pass, the elevation cutoff (W) is assumed proportional (C) to the offshore significant wave height Hs. Comparison of in situ and lidar surveys on a moderately sloped, dissipative California beach yields C ≈ 0.4, which is qualitatively consistent with existing observations of runup and setup. The calibrated method rejects ocean surface data, while retaining subaerial beach points more than 70 m seaward of the mean high waterline, which is often used as a conservative default waterline.

Corresponding author address: Marissa L. Yates, Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA 92093. Email: myates@coast.ucsd.edu

Save