Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms

David M. Winker NASA Langley Research Center, Hampton, Virginia

Search for other papers by David M. Winker in
Current site
Google Scholar
PubMed
Close
,
Mark A. Vaughan NASA Langley Research Center, Hampton, Virginia

Search for other papers by Mark A. Vaughan in
Current site
Google Scholar
PubMed
Close
,
Ali Omar NASA Langley Research Center, Hampton, Virginia

Search for other papers by Ali Omar in
Current site
Google Scholar
PubMed
Close
,
Yongxiang Hu NASA Langley Research Center, Hampton, Virginia

Search for other papers by Yongxiang Hu in
Current site
Google Scholar
PubMed
Close
,
Kathleen A. Powell NASA Langley Research Center, Hampton, Virginia

Search for other papers by Kathleen A. Powell in
Current site
Google Scholar
PubMed
Close
,
Zhaoyan Liu National Institute of Aerospace, Hampton, Virginia

Search for other papers by Zhaoyan Liu in
Current site
Google Scholar
PubMed
Close
,
William H. Hunt Science Systems and Applications Inc., Hampton, Virginia

Search for other papers by William H. Hunt in
Current site
Google Scholar
PubMed
Close
, and
Stuart A. Young CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia

Search for other papers by Stuart A. Young in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) is a two-wavelength polarization lidar that performs global profiling of aerosols and clouds in the troposphere and lower stratosphere. CALIOP is the primary instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite, which has flown in formation with the NASA A-train constellation of satellites since May 2006. The global, multiyear dataset obtained from CALIOP provides a new view of the earth’s atmosphere and will lead to an improved understanding of the role of aerosols and clouds in the climate system. A suite of algorithms has been developed to identify aerosol and cloud layers and to retrieve a variety of optical and microphysical properties. CALIOP represents a significant advance over previous space lidars, and the algorithms that have been developed have many innovative aspects to take advantage of its capabilities. This paper provides a brief overview of the CALIPSO mission, the CALIOP instrument and data products, and an overview of the algorithms used to produce these data products.

Corresponding author address: David M. Winker, NASA Langley Research Center, MS 475, Hampton, VA 23681. Email: david.m.winker@nasa.gov

This article included in the CALIPSO special collection.

Abstract

The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) is a two-wavelength polarization lidar that performs global profiling of aerosols and clouds in the troposphere and lower stratosphere. CALIOP is the primary instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite, which has flown in formation with the NASA A-train constellation of satellites since May 2006. The global, multiyear dataset obtained from CALIOP provides a new view of the earth’s atmosphere and will lead to an improved understanding of the role of aerosols and clouds in the climate system. A suite of algorithms has been developed to identify aerosol and cloud layers and to retrieve a variety of optical and microphysical properties. CALIOP represents a significant advance over previous space lidars, and the algorithms that have been developed have many innovative aspects to take advantage of its capabilities. This paper provides a brief overview of the CALIPSO mission, the CALIOP instrument and data products, and an overview of the algorithms used to produce these data products.

Corresponding author address: David M. Winker, NASA Langley Research Center, MS 475, Hampton, VA 23681. Email: david.m.winker@nasa.gov

This article included in the CALIPSO special collection.

Save
  • Abshire, J. B., Sun X. , Riris H. , Sirota J. M. , McGarry J. F. , Palm S. , Yi D. , and Liiva P. , 2005: Geoscience Laser Altimeter System (GLAS) on the ICESat Mission: On-orbit measurement performance. Geophys. Res. Lett., 32 , L21S02. doi:10.1029/2005GL024028.

    • Search Google Scholar
    • Export Citation
  • Ackermann, J., 1998: The extinction-to-backscatter ratio of tropospheric aerosol: A numerical study. J. Atmos. Oceanic Technol., 15 , 10431050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, T. L., Masonis S. J. , Covert D. S. , and Charlson R. J. , 2000: In situ measurements of the aerosol extinction-to-backscatter ratio at a polluted continental site. J. Geophys. Res., 105 , 2690726915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breon, F-M., and Dubrulle B. , 2004: Horizontally oriented plates in clouds. J. Atmos. Sci., 61 , 28882898.

  • Dubovik, O., and King M. D. , 2000: A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements. J. Geophys. Res., 105 , 2067320696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hahn, C. J., Warren S. G. , London J. , Chervin R. M. , and Jenne R. , 1990: Atlas of simultaneous occurrence of different cloud types over the ocean. NCAR Tech. Note TN-201+STR, 212 pp.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., 2007: Depolarization ratio–effective lidar ratio relation: Theoretical basis for space lidar cloud phase discrimination. Geophys. Res. Lett, 34 , L11812. doi:10.1029/2007GL029584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y., and Coauthors, 2009: CALIPSO/CALIOP cloud phase discrimination algorithm. J. Atmos. Oceanic Technol., 26 , 22932309.

  • Hunt, W. H., Winker D. M. , Vaughan M. A. , Powell K. A. , Lucker P. L. , and Weimer C. , 2009: CALIPSO lidar description and performance assessment. J. Atmos. Oceanic Technol., 26 , 12141228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahn, R., Banerjee P. , and McDonald D. , 2001: Sensitivity of multiangle imaging to natural mixtures of aerosols over ocean. J. Geophys. Res., 106 , 1821918238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalashnikova, O. V., and Sokolik I. N. , 2002: Importance of shapes and compositions of wind-blown dust particles for remote sensing at solar wavelengths. Geophys. Res. Lett., 29 , 1398. doi:10.1029/2002GL014947.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., Tanré D. , Remer L. A. , Vermote E. F. , Chu A. , and Holben B. N. , 1997: Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res., 102 , 1705117067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, M. D., Kaufman Y. J. , Tanré D. , and Nakajima T. , 1999: Remote sensing of tropospheric aerosols from space: Past, present, and future. Bull. Amer. Meteor. Soc., 80 , 22292259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., Vaughan M. A. , Winker D. M. , Hostetler C. A. , Poole L. R. , Hlavka D. , Hart W. , and McGill M. , 2004: Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data. J. Geophys. Res., 109 , D15202. doi:10.1029/2004JD004732.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z., and Coauthors, 2009: The CALIPSO lidar cloud and aerosol discrimination: Version 2 algorithm and initial assessment of performance. J. Atmos. Oceanic Technol., 26 , 11981213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGill, M. J., Hlavka D. , Hart W. , Scott V. S. , Spinhirne J. , and Schmid B. , 2002: Cloud physics lidar: Instrument description and initial measurement results. Appl. Opt., 41 , 37253734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGill, M. J., Vaughan M. A. , Trepte C. R. , Hart W. D. , Hlavka D. L. , Winker D. M. , and Kuehn R. , 2007: Airborne validation of spatial properties measured by the CALIPSO lidar. J. Geophys. Res., 112 , D20201. doi:10.1029/2007JD008768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., and Coauthors, 2007: Accurate monitoring of terrestrial aerosols and total solar irradiance: Introducing the Glory mission. Bull. Amer. Meteor. Soc., 88 , 677691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Omar, A. H., Won J-G. , Winker D. M. , Yoon S-C. , Dubovik O. , and McCormick M. P. , 2005: Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements. J. Geophys. Res., 110 , D10S14. doi:10.1029/2004JD004874.

    • Search Google Scholar
    • Export Citation
  • Omar, A. H., and Coauthors, 2009: The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Oceanic Technol., 26 , 19942014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, K. A., and Coauthors, 2009: CALIPSO lidar calibration algorithms. Part I: Nighttime 532-nm parallel channel and 532-nm perpendicular channel. J. Atmos. Oceanic Technol., 26 , 20152033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, P. B., Swissler T. J. , and McCormick M. P. , 1979: Methodology for error analysis and simulation of lidar aerosol measurements. Appl. Opt., 18 , 37833797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., 1991: The polarization lidar technique for cloud research: A review and current assessment. Bull. Amer. Meteor. Soc., 72 , 18481866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., and Benson S. , 2001: A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part II: Microphysical properties derived from lidar depolarization. J. Atmos. Sci., 58 , 21032112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., and Comstock J. M. , 2001: A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part III: Radiative properties. J. Atmos. Sci., 58 , 21132127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, S., and Coauthors, 2007: Technical summary. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 19–91.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83 , 17711790.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanré, D., Kaufman Y. J. , Herman M. , and Mattoo S. , 1997: Remote sensing of aerosol properties over oceans using the MODIS/ESO spectral radiances. J. Geophys. Res., 102 , 1697116988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomason, L. W., Pitts M. C. , and Winker D. M. , 2007: CALIPSO observations of stratospheric aerosols: A preliminary assessment. Atmos. Chem. Phys., 7 , 52835290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van de Hulst, H. C., 1957: Light Scattering by Small Particles. Wiley and Sons, 470 pp.

  • Vaughan, M. A., Young S. A. , Winker D. M. , Powell K. A. , Omar A. H. , Liu Z. , Hu Y. , and Hostetler C. A. , 2004: Fully automated analysis of space-based lidar data: An overview of the CALIPSO retrieval algorithms and data products. Laser Radar Techniques for Atmospheric Sensing, U. N. Singh, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 5575), 16–30.

    • Search Google Scholar
    • Export Citation
  • Vaughan, M. A., McGill M. J. , Liu Z. , Hu Y. , Kuehn R. E. , and Rodier S. D. , 2008: Backscatter color ratios of cirrus clouds measured by the Cloud Physics Lidar. Proc. 15th Int. Conf. on Clouds and Precipitation, Cancun, Mexico, International Commission on Clouds and Precipitation, P13.16.

    • Search Google Scholar
    • Export Citation
  • Vaughan, M. A., and Coauthors, 2009: Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements. J. Atmos. Oceanic Technol., 26 , 20342050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., 2003: Accounting for multiple scattering in retrievals from space lidar. Lidar Scattering Experiments, C. Werner, U. Oppel, and T. Rother, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 5059), 128–139.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., Couch R. H. , and McCormick P. , 1996: An overview of LITE: NASA’s Lidar In-space Technology Experiment. Proc. IEEE, 84 , 164180.

  • Winker, D. M., Pelon J. , and McCormick M. P. , 2003: The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. Lidar Remote Sensing for Industry and Environment Monitoring III, U. N. Singh, T. Itabe, and Z. Lui, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 4893), 1–11.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., Hunt W. H. , and McGill M. J. , 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34 , L19803. doi:10.1029/2007GL030135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, S. A., 1995: Analysis of lidar backscatter profiles in optically thin clouds. Appl. Opt., 34 , 70197031.

  • Young, S. A., and Vaughan M. A. , 2009: The retrieval of profiles of particulate extinction from Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) lidar data: Algorithm description. J. Atmos. Oceanic Technol., 26 , 11051119.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 11416 2848 271
PDF Downloads 6699 1693 131