Polarimetric Spectral Filter for Adaptive Clutter and Noise Suppression

Dmitri N. Moisseev University of Helsinki, Helsinki, Finland

Search for other papers by Dmitri N. Moisseev in
Current site
Google Scholar
PubMed
Close
and
V. Chandrasekar Colorado State University, Fort Collins, Colorado

Search for other papers by V. Chandrasekar in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this paper, spectral decompositions of differential reflectivity, differential phase, and copolar correlation coefficient are used to discriminate between weather and nonweather signals in the spectral domain. This approach gives a greater flexibility for discrimination between different types of scattering sources present in a radar observation volume. A spectral filter, which removes nonweather signals, is defined based on this method. The performance of this filter is demonstrated on the Colorado State University–University of Chicago–Illinois State Water Survey (CSU–CHILL) observations. It is shown that the resulting filter parameters are adaptively defined for each range sample and do not require an assumption on spectral properties of ground clutter.

Corresponding author address: Dmitri N. Moisseev, Dept. of Physics, Division of Atmospheric Sciences, University of Helsinki, P.O. Box 64, Gustaf Hällströminkatu 2, 00014 Helsinki, Finland. Email: dmitri.moisseev@helsinki.fi

Abstract

In this paper, spectral decompositions of differential reflectivity, differential phase, and copolar correlation coefficient are used to discriminate between weather and nonweather signals in the spectral domain. This approach gives a greater flexibility for discrimination between different types of scattering sources present in a radar observation volume. A spectral filter, which removes nonweather signals, is defined based on this method. The performance of this filter is demonstrated on the Colorado State University–University of Chicago–Illinois State Water Survey (CSU–CHILL) observations. It is shown that the resulting filter parameters are adaptively defined for each range sample and do not require an assumption on spectral properties of ground clutter.

Corresponding author address: Dmitri N. Moisseev, Dept. of Physics, Division of Atmospheric Sciences, University of Helsinki, P.O. Box 64, Gustaf Hällströminkatu 2, 00014 Helsinki, Finland. Email: dmitri.moisseev@helsinki.fi

Save
  • Bachmann, S., and Zrnić D. , 2007: Spectral density of polarimetric variables separating biological scatterers in the VAD display. J. Atmos. Oceanic Technol., 24 , 11861198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berenguer, M., Sempere-Torres D. , Corral C. , and Sánchez-Diezma R. , 2006: A fuzzy logic technique for identifying nonprecipitating echoes in radar scans. J. Atmos. Oceanic Technol., 23 , 11571180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bharadwaj, N., Chandrasekar V. , and Junyent F. , 2007: Evaluation of first generation CASA radar waveform in the IP1 testbed. Preprints, Int. Geoscience and Remote Sensing Symp., Barcelona, Spain, IEEE, 2742–2745.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and Chandrasekar V. , 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., Seliga T. A. , and Cherry S. M. , 1983: Statistical properties of the dual-polarization differential reflectivity (ZDR) radar signal. IEEE Trans. Geosci. Remote Sens., 21 , 215220.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., Bringi V. , and Brockwell P. , 1986: Statistical properties of dual-polarized radar signals. Preprints, 23rd Conf. on Radar Meteorology, Snowmass, CO, Amer. Meteor. Soc., 193–196.

    • Search Google Scholar
    • Export Citation
  • Cho, Y-H., Lee G. W. , Kim K-E. , and Zawadzki I. , 2006: Identification and removal of ground echoes and anomalous propagation using the characteristics of radar echoes. J. Atmos. Oceanic Technol., 23 , 12061222.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • da Silveira, R. B., and Holt A. R. , 2001: An automatic identification of clutter and anomalous propagation in polarization-diversity weather radar data using neural networks. IEEE Trans. Geosci. Remote Sens., 39 , 17771788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dixon, M., Kessinger C. , and Hubbert J. C. , 2006: Echo classification within the spectral domain to discriminate ground clutter from meteorological targets. Preprints, 22nd Int. Conf. on Interactive Information Processing Systems for Meteorology, Oceanography, and Hydrology, Atlanta, GA, Amer. Meteor. Soc., 9.6. [Available online at http://ams.confex.com/ams/pdfpapers/105302.pdf.].

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and Zrnić D. S. , 1993: Doppler Radar and Weather Observations. Academic Press, 562 pp.

  • Giuli, D., Gherardelli M. , Freni A. , Seliga T. A. , and Aydin K. , 1991: Rainfall and clutter discrimination by means of dual-linear polarization radar measurements. J. Atmos. Oceanic Technol., 8 , 777789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., Tabary P. , and Parent du Chatelet J. , 2007: A fuzzy logic algorithm for the separation of precipitating from nonprecipitating echoes using polarimetric radar observations. J. Atmos. Oceanic Technol., 24 , 14391451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groginsky, H. L., and Glover K. M. , 1980: Weather radar canceller design. Proc. 19th Conf. on Radar Meteorology, Miami Beach, FL, Amer. Meteor. Soc., 192–198.

    • Search Google Scholar
    • Export Citation
  • Lim, S., Chandrasekar V. , and Bringi V. N. , 2005: Hydrometeor classification system using dual-polarization radar measurements: Model improvements and in situ verification. IEEE Trans. Geosci. Remote Sens., 43 , 792801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., and Chandrasekar V. , 2000: Classification of hydrometeor based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems and in situ verification. J. Atmos. Oceanic Technol., 17 , 140164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moisseev, D., and Chandrasekar V. , 2007: Nonparametric estimation of raindrop size distributions from dual-polarization radar spectral observations. J. Atmos. Oceanic Technol., 24 , 10081018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moisseev, D., Unal C. , Russchenberg H. , and Ligthart L. , 2000: Doppler polarimetric ground clutter identification and suppression for atmospheric radars based on co-polar correlation. Preprints, 13th Int. Conf. on Microwaves, Radar and Wireless Communications, MIKON-2000, Vol. 1, Wroclaw, Poland, 94–97.

    • Search Google Scholar
    • Export Citation
  • Moisseev, D., Unal C. , Russchenberg H. , and Ligthart L. , 2002: A new method to separate ground clutter and atmospheric reflections in the case of similar Doppler velocities. IEEE Trans. Geosci. Remote Sens., 40 , 239246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Passarelli R. E. Jr., , Romanik P. , Geotis S. G. , and Siggia A. D. , 1981: Ground clutter rejection in the frequency domain. Preprints, 20th Conf. on Radar Meteorology, Boston, MA, Amer. Meteor. Soc., 295–300.

    • Search Google Scholar
    • Export Citation
  • Sachidananda, M., and Zrnić D. , 1986: Zdr measurement considerations for a fast scan capability radar. Radio Sci., 20 , 907922.

  • Sachidananda, M., and Zrnić D. , 1989: Efficient processing of alternately polarized radar signals. J. Atmos. Oceanic Technol., 6 , 173181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seminario, M., Gojara K. , and Chandrasekar V. , 2001: Noise correction of polarimetric radar measurements. Preprints, 30th Int. Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc., P1.7. [Available online at http://ams.confex.com/ams/pdfpapers/22049.pdf.].

    • Search Google Scholar
    • Export Citation
  • Siggia, A. D., and Passarelli R. E. , 2004: Gaussian model adaptive processing (GMAP) for improved ground clutter cancellation and moment calculation. Proc. Third European Conf. on Radar in Meteorology and Hydrology, Visby, Sweden Copernicus, 67–73.

    • Search Google Scholar
    • Export Citation
  • Stoica, P., and Moses R. , 1997: Introduction to Spectral Analysis. Prentice-Hall, 319 pp.

  • Unal, C. M. H., and Moisseev D. N. , 2004: Combined Doppler and polarimetric radar measurements; correction for spectrum aliasing and nonsimultaneous polarimetric measurements. J. Atmos. Oceanic Technol., 21 , 443456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanovsky, F. J., Russchenberg H. W. J. , and Unal C. M. H. , 2005: Retrieval of information about turbulence in rain by using Doppler-polarimetric radar. IEEE Trans. Microwave Theory Technol., 53 , 444450.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 457 140 12
PDF Downloads 529 147 16