An Analysis of the Performance of the UFAM Pulsed Doppler Lidar for Observing the Boundary Layer

Guy Pearson School of Environment and Life Science, University of Salford, Salford, and Halo Photonics Ltd., Leigh, United Kingdom

Search for other papers by Guy Pearson in
Current site
Google Scholar
PubMed
Close
,
Fay Davies School of Environment and Life Science, University of Salford, Salford, United Kingdom

Search for other papers by Fay Davies in
Current site
Google Scholar
PubMed
Close
, and
Chris Collier School of Environment and Life Science, University of Salford, Salford, United Kingdom

Search for other papers by Chris Collier in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The performance of the 1.5-μm pulsed Doppler lidar, operated by the U.K. Universities Facility for Atmospheric Measurement (UFAM) over a 51-day continuous and unattended field deployment in southern England, is described and analyzed with a view to demonstrating the capabilities of the system for remote measurements of aerosols and velocities in the boundary layer. A statistical assessment of the vertical pointing mode in terms of the availability and errors in the data versus range is presented. Examples of lidar data are compared to theoretical predictions, radiosondes, the UFAM radar wind profiler, and an ultrasonic anemometer.

Corresponding author address: Guy Pearson, Peel Building, University of Salford, Salford M5 4WT, United Kingdom. Email: guy@halo-photonics.com

Abstract

The performance of the 1.5-μm pulsed Doppler lidar, operated by the U.K. Universities Facility for Atmospheric Measurement (UFAM) over a 51-day continuous and unattended field deployment in southern England, is described and analyzed with a view to demonstrating the capabilities of the system for remote measurements of aerosols and velocities in the boundary layer. A statistical assessment of the vertical pointing mode in terms of the availability and errors in the data versus range is presented. Examples of lidar data are compared to theoretical predictions, radiosondes, the UFAM radar wind profiler, and an ultrasonic anemometer.

Corresponding author address: Guy Pearson, Peel Building, University of Salford, Salford M5 4WT, United Kingdom. Email: guy@halo-photonics.com

Save
  • Bozier, K. E., Pearson G. N. , and Collier C. G. , 2007: Doppler lidar observations of Russian forest fire plumes over Helsinki. Weather, 62 , 203208.

  • Browning, K. A., and Wexler R. , 1968: The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteor., 7 , 105113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collier, C. G., and Coauthors, 2005: Dual-Doppler lidar measurements for improving dispersion models. Bull. Amer. Meteor. Soc., 86 , 825838.

  • Dabas, A., 1999: Semi-empirical model for the reliability of a matched filter frequency estimator for Doppler lidar. J. Atmos. Oceanic Technol., 16 , 1928.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, F., Middleton D. R. , and Bozier K. E. , 2007: Urban air pollution modeling and measurements of boundary layer height. Atmos. Environ., 41 , 40404049.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R., 2001: Estimation of velocity error for Doppler lidar measurements. J. Atmos. Oceanic Technol., 18 , 16281639.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R., 2004: Velocity error for coherent Doppler lidar with pulse accumulation. J. Atmos. Oceanic Technol., 21 , 905920.

  • Frehlich, R., Hannon S. M. , and Henderson S. W. , 1997: Coherent Doppler lidar measurements of winds in the weak signal regime. Appl. Opt., 36 , 34913499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frehlich, R., Meillier Y. , Jensen M. L. , and Balsley B. , 2006: Measurements of boundary layer profiles in an urban environment. J. Appl. Meteor. Climatol., 45 , 821837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grund, C. J., Banta R. M. , George J. L. , Howell J. N. , Post M. J. , Richter R. A. , and Weickmann A. M. , 2001: High-resolution Doppler lidar for boundary layer and cloud research. J. Atmos. Oceanic Technol., 18 , 376393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffaker, M. R., and Hardesty R. M. , 1996: Remote sensing of atmospheric wind velocities using solid state and CO2 coherent laser systems. Proc. IEEE, 84 , 181204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kameyama, S., Ando T. , Asaka K. , Hirano Y. , and Wadaka S. , 2007: Compact all-fiber pulsed coherent Doppler lidar system for wind sensing. Appl. Opt., 46 , 19531962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Middleton, D. R., and Davies F. , 2005: Evaluation of dispersion model parameters by dual Doppler lidars over West London, England. Int. J. Environ. Pollut., 25 , 8088.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newsom, R. K., and Banta R. M. , 2003: Shear flow instability in the stable nocturnal boundary layer as observed by Doppler lidar during CASES-99. J. Atmos. Sci., 60 , 1633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norton, E. G., Vaughan G. , Methven J. , Coe H. , Brooks B. , Gallagher M. , and Longley I. , 2006: Boundary layer structure and decoupling from synoptic scale flow during NAMBLEX. Atmos. Chem. Phys., 6 , 433444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearson, G. N., Roberts P. J. , Eacock J. R. , and Harris M. , 2002: Analysis of the performance of a coherent pulsed fiber lidar for aerosol backscatter applications. Appl. Opt., 41 , 64426450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rye, B. J., and Hardesty R. M. , 1993: Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II: Correlogram accumulation. IEEE Trans. Geosci. Remote Sens., 31 , 2835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rye, B. J., and Hardesty R. M. , 1997: Estimate optimization parameters for incoherent backscatter heterodyne lidar. Appl. Opt., 36 , 94269436.

    • Search Google Scholar
    • Export Citation
  • Spinhirne, J. D., Chudamani S. , Cavanaugh J. F. , and Bufton J. L. , 1997: Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 μm by airborne hard-target-calibrated Nd:YAG /methane Raman lidar. Appl. Opt., 36 , 34753490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spuler, S. M., and Mayor S. D. , 2005: Scanning eye-safe elastic backscatter lidar at 1.54 μm. J. Atmos. Oceanic Technol., 22 , 696703.

  • Srivastava, S., and Coauthors, 2001: Wavelength dependence of backscatter by use of aerosol microphysics and lidar data sets: Application to 2.1-μm wavelength for space-based and airborne lidars. Appl. Opt., 40 , 47594769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaughan, J. M., Maryon R. H. , and Geddes N. J. , 2002: Comparison of atmospheric aerosol backscatter and air mass back trajectories. Meteor. Atmos. Phys., 79 , 3346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Werner, C., 2005: Doppler wind lidar. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, Ed., Series in Optical Sciences, Vol. 102, Springer, 339–342.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2008: The Convective and Orographically Induced Precipitation Study (COPS): A research project for improving quantitative precipitation forecasting in low-mountain regions. Bull. Amer. Meteor. Soc., 89 , 14771486.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2427 751 65
PDF Downloads 1493 297 17