Development of a Long-Range Lightning Detection Network for the Pacific: Construction, Calibration, and Performance

Antti T. Pessi Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Antti T. Pessi in
Current site
Google Scholar
PubMed
Close
,
Steven Businger Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii

Search for other papers by Steven Businger in
Current site
Google Scholar
PubMed
Close
,
K. L. Cummins The University of Arizona, Tucson, Arizona

Search for other papers by K. L. Cummins in
Current site
Google Scholar
PubMed
Close
,
N. W. S. Demetriades Vaisala, Inc., Tucson, Arizona

Search for other papers by N. W. S. Demetriades in
Current site
Google Scholar
PubMed
Close
,
M. Murphy Vaisala, Inc., Tucson, Arizona

Search for other papers by M. Murphy in
Current site
Google Scholar
PubMed
Close
, and
B. Pifer Vaisala, Inc., Tucson, Arizona

Search for other papers by B. Pifer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The waveguide between the earth’s surface and the ionosphere allows very low-frequency (VLF) emissions generated by lightning, called sferics, to propagate over long distances. The new Pacific Lightning Detection Network (PacNet), as a part of a larger long-range lightning detection network (LLDN), utilizes this attribute to monitor lightning activity over the central North Pacific Ocean with a network of ground-based lightning detectors that have been installed on four widely spaced Pacific islands (400–3800 km). PacNet and LLDN sensors combine both magnetic direction finding (MDF) and time-of-arrival (TOA)-based technology to locate a strike with as few as two sensors. As a result, PacNet/LLDN is one of the few observing systems, outside of geostationary satellites, that provides continuous real-time data concerning convective storms throughout a synoptic-scale area over the open ocean.

The performance of the PacNet/LLDN was carefully assessed. Long-range lightning flash detection efficiency (DE) and location accuracy (LA) models were developed with reference to accurate data from the U.S. National Lightning Detection Network (NLDN). Model calibration procedures are detailed, and comparisons of model results with lightning observations from the PacNet/LLDN in correlation with NASA’s Lightning Imaging Sensor (LIS) are presented. The daytime and nighttime flash DE in the north-central Pacific is in the range of 17%–23% and 40%–61%, respectively. The median LA is in the range of 13–40 km. The results of this extensive analysis suggest that the DE and LA models are reasonably able to reproduce the observed performance of PacNet/LLDN.

The implications of this work are that the DE and LA model outputs can be used in quantitative applications of the PacNet/LLDN over the North Pacific Ocean and elsewhere. For example, by virtue of the relationship between lightning and rainfall rates, these data also hold promise as input for NWP models as a proxy for latent heat release in convection. Moreover, the PacNet/LLDN datastream is useful for investigations of storm morphology and cloud microphysics over the central North Pacific Ocean. Notably, the PacNet/LLDN lightning datastream has application for planning transpacific flights and nowcasting of squall lines and tropical storms.

Corresponding author address: Steven Businger, Department of Meteorology, University of Hawaii, 2525 Correa Rd., Honolulu, HI 96822. Email: businger@hawaii.edu

Abstract

The waveguide between the earth’s surface and the ionosphere allows very low-frequency (VLF) emissions generated by lightning, called sferics, to propagate over long distances. The new Pacific Lightning Detection Network (PacNet), as a part of a larger long-range lightning detection network (LLDN), utilizes this attribute to monitor lightning activity over the central North Pacific Ocean with a network of ground-based lightning detectors that have been installed on four widely spaced Pacific islands (400–3800 km). PacNet and LLDN sensors combine both magnetic direction finding (MDF) and time-of-arrival (TOA)-based technology to locate a strike with as few as two sensors. As a result, PacNet/LLDN is one of the few observing systems, outside of geostationary satellites, that provides continuous real-time data concerning convective storms throughout a synoptic-scale area over the open ocean.

The performance of the PacNet/LLDN was carefully assessed. Long-range lightning flash detection efficiency (DE) and location accuracy (LA) models were developed with reference to accurate data from the U.S. National Lightning Detection Network (NLDN). Model calibration procedures are detailed, and comparisons of model results with lightning observations from the PacNet/LLDN in correlation with NASA’s Lightning Imaging Sensor (LIS) are presented. The daytime and nighttime flash DE in the north-central Pacific is in the range of 17%–23% and 40%–61%, respectively. The median LA is in the range of 13–40 km. The results of this extensive analysis suggest that the DE and LA models are reasonably able to reproduce the observed performance of PacNet/LLDN.

The implications of this work are that the DE and LA model outputs can be used in quantitative applications of the PacNet/LLDN over the North Pacific Ocean and elsewhere. For example, by virtue of the relationship between lightning and rainfall rates, these data also hold promise as input for NWP models as a proxy for latent heat release in convection. Moreover, the PacNet/LLDN datastream is useful for investigations of storm morphology and cloud microphysics over the central North Pacific Ocean. Notably, the PacNet/LLDN lightning datastream has application for planning transpacific flights and nowcasting of squall lines and tropical storms.

Corresponding author address: Steven Businger, Department of Meteorology, University of Hawaii, 2525 Correa Rd., Honolulu, HI 96822. Email: businger@hawaii.edu

Save
  • Alexander, G. D., Weinman J. A. , Karyampudi V. M. , Olson W. S. , and Lee A. C. L. , 1999: The effect of assimilating rain rates derived from satellites and lightning on forecasts of the 1993 Superstorm. Mon. Wea. Rev., 127 , 14331457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Al’pert, Ya L., 1963: Radio Wave Propagation and the Ionosphere. Consultants Bureau Enterprises, 394 pp.

  • Biagi, C., Cummins K. , Kehoe K. , and Krider E. , 2007: National Lightning Detection Network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003–2004. J. Geophys. Res., 112 , D05208. doi:10.1029/2006JD007341.

    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., Cummins K. L. , Christian H. J. , and Goodman S. J. , 2001: Combined satellite- and surface-based estimation of the intracloud–cloud-to-ground lightning ratio over the continental United States. Mon. Wea. Rev., 129 , 108122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., Koshak W. J. , and Blakeslee R. J. , 2002: Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor. Part I: Predicted diurnal variability. J. Atmos. Oceanic Technol., 19 , 13181332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budden, K. G., 1961: The Wave-Guide Mode Theory of Wave Propagation. Prentice-Hall, 325 pp.

  • Chang, D-E., Weinman J. A. , Morales C. A. , and Olson W. S. , 2001: The effect of spaceborne microwave and ground-based continuous lightning measurements on forecasts of the 1998 Groundhog Day Storm. Mon. Wea. Rev., 129 , 18091833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christian, H. J., 2006: Geostationary Lightning Mapper (GLM). Preprints, 12th Conf. on Aviation Range and Aerospace Meteorology, Atlanta, GA, Amer. Meteor. Soc., J2.3. [Available online at http://ams.confex.com/ams/Annual2006/techprogram/paper_105471.htm.].

    • Search Google Scholar
    • Export Citation
  • Chronis, T. G., and Anagnostou E. N. , 2003: Error analysis for a long-range lightning monitoring network of ground-based receivers in Europe. J. Geophys. Res., 108 , 4779. doi:10.1029/2003JD003776.

    • Search Google Scholar
    • Export Citation
  • Clilverd, M. A., Watkins N. W. , Smith A. J. , and Yearby K. H. , 1999a: Diurnal and annual variations in 10-kHz radio noise. Radio Sci., 34 , 933938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clilverd, M. A., Thomson N. R. , and Rodger C. J. , 1999b: Sunrise effects on VLF signals propagating over a long north-south path. Radio Sci., 34 , 939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crombie, D. D., 1964: Periodic fading of VLF signals received over long paths during sunrise and sunset. J. Res. Natl. Bur. Stand., Sect. D, 68 , 2734.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., Krider E. P. , and Malone M. D. , 1998a: The US National Lightning Detection Network™ and applications of cloud-to-ground lightning data by electric power utilities. IEEE Trans. Electromagn. Compat., 40 , 465480.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., Murphy M. J. , Bardo E. A. , Hiscox W. L. , Pyle R. D. , and Pifer A. E. , 1998b: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103 , 90359044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demetriades, N. W. S., and Holle R. L. , 2005: Long-range lightning applications for hurricane intensity. Preprints, Conf. on Meteorological Applications of Lightning Data, San Diego, CA, Amer. Meteor. Soc., P2.8.

    • Search Google Scholar
    • Export Citation
  • Efron, B., 1981: Nonparametric estimates of standard error: The jackknife, the bootstrap and other methods. Biometrika, 68 , 589599.

  • Ferguson, J. A., and Snyder F. P. , 1990: Computer programs for assessment of long-wavelength radio communications, version 1.0: Full FORTRAN code user’s guide. Naval Ocean Systems Center Tech. Doc. 1773, Defense Tech. Information Center AD-B144 839.

    • Search Google Scholar
    • Export Citation
  • Hiscox, W. L., Krider E. P. , Pifer A. E. , and Uman M. A. , 1984: A systematic method for identifying and correcting “site errors” in a network of magnetic direction finders. Preprints, Int. Aerospace and Ground Conf. on Lightning and Static Electricity, Orlando, FL, National Interagency Coordination Group, 7-1–7-5.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. L., Janota D. E. , and Hay J. E. , 1982: An operational comparison of lightning warning systems. J. Appl. Meteor., 21 , 703707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelso, J. M., 1964: Radio Ray Propagation in the Ionosphere. McGraw-Hill, 408 pp.

  • Keogh, S., Hibbett E. , Nash J. , and Eyre J. , 2006: The Met Office Arrival Time Difference (ATD) system for thunderstorm detection and lightning location. Met Office Forecasting Research Tech. Rep. 488, 22 pp.

    • Search Google Scholar
    • Export Citation
  • Krider, E. P., Noggle R. C. , and Uman M. A. , 1976: A gated, wideband magnetic direction finder for lightning return strokes. J. Appl. Meteor., 15 , 301306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynn, K. J. W., 1967: Anomalous sunrise effects observed on a long transequatorial VLF propagation path. Radio Sci., 2 , 521530.

  • Mackerras, D., Darveniza M. , Orville R. , Williams E. , and Goodman S. , 1998: Global lightning: Total, cloud and ground flash estimates. J. Geophys. Res., 103 , 1979119809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazur, V., Krehbiel P. R. , and Shao X. M. , 1995: Correlated high-speed video and radio interferometric observations of a cloud-to-ground lightning flash. J. Geophys. Res., 100 , (D12). 2573125753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazur, V., Williams E. , Boldi R. , Maier L. , and Proctor D. , 1997: Initial comparison of lightning mapping system with operational time-of-arrival and interferometric systems. J. Geophys. Res., 102 , 33113325.

    • Search Google Scholar
    • Export Citation
  • McRae, W. M., and Thomson N. R. , 2000: VLF phase and amplitude: Daytime ionospheric parameters. J. Atmos. Sol. Terr. Phys., 62 , 609618.

  • McRae, W. M., and Thomson N. R. , 2004: Solar flare induced ionospheric D-region enhancements from VLF phase and amplitude observations. J. Atmos. Sol.-Terr. Phys., 66 , 7787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, M. J., Demetriades N. W. S. , Holle R. L. , and Cummins K. L. , 2006: Overview of capabilities and performance of the U.S. National Lightning Detection Network. Preprints, 12th Conf. on Aviation Range and Aerospace Meteorology, Atlanta, GA, Amer. Meteor. Soc., J2.5. [Available online at http://ams.confex.com/ams/pdfpapers/103980.pdf.].

    • Search Google Scholar
    • Export Citation
  • Nash, J., Atkinson N. C. , Hibbett E. , Callaghan G. , and Taylor P. L. , 2005: Progress in introducing new technology sensor sites for the Met Office long-range lightning detection system. Proc. WMO Tech. Conf. on Meteorological and Environmental Instruments and Methods of Observation (TECO-2005), Bucharest, Romania, World Meterological Organization, 2.9.

    • Search Google Scholar
    • Export Citation
  • Nickolaenko, A. P., 1995: ELF/VLF propagation measurements in the Atlantic during 1989. J. Atmos. Sol.-Terr. Phys., 57 , 821834.

  • Ogawa, T., and Brook M. , 1964: The mechanism of the intracloud lightning discharge. J. Geophys. Res., 69 , 51415150.

  • Orville, R. E., and Huffines G. R. , 2001: Cloud-to-ground lightning in the United States: NLDN results in the first decade, 1989–98. Mon. Wea. Rev., 129 , 11791193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papadopoulos, A., Chronis T. , and Anagnostou E. N. , 2005: Improving convective precipitation forecasting through assimilation of regional lightning measurements in a mesoscale model. Mon. Wea. Rev., 133 , 19611977.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pappert, R. A., and Snyder F. P. , 1972: Some results of a mode-conversion program for VLF. Radio Sci., 7 , 913923.

  • Pappert, R. A., and Hitney L. R. , 1988: Empirical modeling of nighttime easterly and westerly VLF propagation in the earth-ionosphere waveguide. Radio Sci., 23 , 599611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pessi, A., and Businger S. , 2009: Relationships between lightning, precipitation, and hydrometeor characteristics over the North Pacific Ocean. J. Appl. Meteor. Climatol., in press.

    • Search Google Scholar
    • Export Citation
  • Pessi, A., Businger S. , and Cherubini T. , 2006: Comparison of two methods for assimilation of lightning data into NWP models. Preprints, First Int. Lightning Meteorology Conf., Tucson, AZ, Vaisala, 12 pp.

    • Search Google Scholar
    • Export Citation
  • Pierce, E., 1970: Latitudinal variation of lightning parameters. J. Appl. Meteor., 9 , 194195.

  • Prentice, S., and Mackerras D. , 1977: The ratio of cloud to cloud-ground lightning flashes in thunderstorms. J. Appl. Meteor., 16 , 545549.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, C., Yair Y. , and Asfur M. , 2007: East African lightning as a precursor of Atlantic hurricane activity. Geophys. Res. Lett., 34 , L09805. doi:10.1029/2006GL028884.

    • Search Google Scholar
    • Export Citation
  • Ries, G., 1967: Results concerning the sunrise effect of VLF signals propagated over long paths. Radio Sci., 2 , 531538.

  • Rodger, C. J., Werner S. , Brundell J. B. , Lay E. H. , Thomson N. R. , Holzworth R. H. , and Dowden R. L. , 2006: Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): Initial case study. Ann. Geophys., 24 , 31973214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, X-M., and Krehbiel P. R. , 1996: The temporal development of intracloud lightning. J. Geophys. Res., 101 , (D21). 2664126668.

  • Shao, X-M., Stanley M. , Regan A. , Harlin J. , Pongratz M. , and Stock M. , 2006: Total lightning observations with the new and improved Los Alamos Sferic Array (LASA). J. Atmos. Oceanic Technol., 23 , 12731288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, D. A., and Coauthors, 1999: A distinct class of isolated intracloud lightning discharges and their associated radio emissions. J. Geophys. Res., 104 , (D4). 41894212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, D. A., Eack K. B. , Harlin J. , Heavner M. J. , Jacobson A. R. , Massey R. S. , Shao X. M. , and Wiens K. C. , 2002: The Los Alamos Sferic Array: A research tool for lightning investigations. J. Geophys. Res., 107 , 4183. doi:10.1029/2001JD000502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Squires, K., and Businger S. , 2008: The morphology of eyewall lightning outbreaks in two category 5 hurricanes. Mon. Wea. Rev., 136 , 17061726.

  • Taylor, W. L., 1960: VLF attenuation for east-west and west-east daytime propagation using atmospherics. J. Geophys. Res., 65 , 1933.

  • Thomson, N. R., 1993: Experimental daytime VLF ionospheric parameters. J. Atmos. Terr. Phys., 55 , 173184.

  • Thomson, N. R., Clilverd M. A. , and McRae W. M. , 2007: Nighttime ionospheric D region parameters from VLF phase and amplitude. J. Geophys. Res., 112 , A07304. doi:10.1029/2007JA012271.

    • Search Google Scholar
    • Export Citation
  • Wait, J. R., 1962: Electromagnetic Waves in Stratified Media. Pergamon Press, 372 pp.

  • Wait, J. R., 1968: Recent theoretical advances in the terrestrial propagation of VLF electromagnetic waves. Advances in Electronics and Electron Physics, L. Marton, Ed., Vol. 25, Academic Press, 145–210.

    • Search Google Scholar
    • Export Citation
  • Wait, J. R., 1996: Electromagnetic Waves in Stratified Media. Electromagnetic Wave Theory Series, IEEE/Oxford University Press, 372 pp.

  • Wait, J. R., and Spies K. P. , 1964: Characteristics of the earth-ionosphere waveguide for VLF radio waves. National Bureau of Standards Tech. Note 300.

    • Search Google Scholar
    • Export Citation
  • Walker, D., 1965: Phase steps and amplitude fading of VLF signals at dawn and dusk. J. Res. Natl. Bur. Stand., Sect. D., 69 , 14351443.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 631 169 8
PDF Downloads 481 127 9