On Scatterometer Ocean Stress

M. Portabella Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands

Search for other papers by M. Portabella in
Current site
Google Scholar
PubMed
Close
and
A. Stoffelen Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands

Search for other papers by A. Stoffelen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Scatterometers estimate the relative atmosphere–ocean motion at spatially high resolution and provide accurate inertial-scale ocean wind forcing information, which is crucial for many ocean, atmosphere, and climate applications. An empirical scatterometer ocean stress (SOS) product is estimated and validated using available statistical information. A triple collocation dataset of scatterometer, and moored buoy and numerical weather prediction (NWP) observations together with two commonly used surface layer (SL) models are used to characterize the SOS. First, a comparison between the two SL models is performed. Although their roughness length and the stability parameterizations differ somewhat, the two models show little differences in terms of stress estimation. Second, a triple collocation exercise is conducted to assess the true and error variances explained by the observations and the SL models. The results show that the uncertainty in the NWP dataset is generally larger than in the buoy and scatterometer wind/stress datasets, but it depends on the spatial scales of interest. The triple collocation analysis also shows that scatterometer winds are as close to real winds as to equivalent neutral winds, provided that the appropriate scaling is used. An explanation for this duality is that the small stability effects found in the analysis are masked by the uncertainty in SL models and their inputs. The triple collocation analysis shows that scatterometer winds can be straightforwardly and reliably transformed to wind stress. This opens the door for the development of wind stress swath (level 2) and gridded (level 3) products for the Advanced Scatterometer (ASCAT) on board Meterological Operation (MetOp) and for further geophysical development.

* Current affiliation: Unidad de Tecnología Marina, CSIC, Barcelona, Spain

Corresponding author address: Dr. Marcos Portabella, Unidad de Techología Marina (UTM-CSIC), Pg. Marítim Barceloneta 37-49, Barcelona 08003, Spain. Email: portabella@cmima.csic.es

Abstract

Scatterometers estimate the relative atmosphere–ocean motion at spatially high resolution and provide accurate inertial-scale ocean wind forcing information, which is crucial for many ocean, atmosphere, and climate applications. An empirical scatterometer ocean stress (SOS) product is estimated and validated using available statistical information. A triple collocation dataset of scatterometer, and moored buoy and numerical weather prediction (NWP) observations together with two commonly used surface layer (SL) models are used to characterize the SOS. First, a comparison between the two SL models is performed. Although their roughness length and the stability parameterizations differ somewhat, the two models show little differences in terms of stress estimation. Second, a triple collocation exercise is conducted to assess the true and error variances explained by the observations and the SL models. The results show that the uncertainty in the NWP dataset is generally larger than in the buoy and scatterometer wind/stress datasets, but it depends on the spatial scales of interest. The triple collocation analysis also shows that scatterometer winds are as close to real winds as to equivalent neutral winds, provided that the appropriate scaling is used. An explanation for this duality is that the small stability effects found in the analysis are masked by the uncertainty in SL models and their inputs. The triple collocation analysis shows that scatterometer winds can be straightforwardly and reliably transformed to wind stress. This opens the door for the development of wind stress swath (level 2) and gridded (level 3) products for the Advanced Scatterometer (ASCAT) on board Meterological Operation (MetOp) and for further geophysical development.

* Current affiliation: Unidad de Tecnología Marina, CSIC, Barcelona, Spain

Corresponding author address: Dr. Marcos Portabella, Unidad de Techología Marina (UTM-CSIC), Pg. Marítim Barceloneta 37-49, Barcelona 08003, Spain. Email: portabella@cmima.csic.es

Save
  • Attema, E. P. W., 1991: The active microwave instrument on board the ERS-1 satellite. Proc. IEEE, 79 , 791799.

  • Beljaars, A. C. M., 1997: Air–sea interaction in the ECMWF model. Proc. Seminar on Atmosphere–Surface Interaction, Reading, United Kingdom, ECMWF, 33–52.

    • Search Google Scholar
    • Export Citation
  • Bidlot, J-R., Holmes D. J. , Wittmann P. A. , Lalbeharry R. , and Chen H. S. , 2002: Intercomparison of the performance of operational ocean wave forecasting systems with buoy data. Wea. Forecasting, 17 , 287310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonekamp, H., Komen G. J. , Sterl A. , Janssen P. A. E. M. , Taylor P. K. , and Yelland M. J. , 2002: Statistical comparisons of observed and ECMWF modelled open ocean surface drag. J. Phys. Oceanogr., 32 , 10101027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourassa, M. A., and Perrie W. , 2006: Satellite-based observations of surface turbulent stress during severe weather. Atmosphere–Ocean Interactions, Volume 2, W. Perrie, Ed., Advances in Fluid Mechanics, Vol. 39, WIT Press, 35–52.

    • Search Google Scholar
    • Export Citation
  • Brown, A. R., Beljaars A. C. M. , Hersbach H. , Hollingsworth A. , Miller M. , and Vasiljevic D. , 2005: Wind turning across the marine atmospheric boundary layer. Quart. J. Roy. Meteor. Soc., 131 , 12331250. doi:10.1256/qj.04.163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Businger, J. A., and Haugen D. H. , 1973: Turbulent transfer in the atmospheric surface layer. Workshop on Micrometeorology, D. H. Haugen, Ed., Amer. Meteor. Soc., 67–100.

    • Search Google Scholar
    • Export Citation
  • Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81 , 639640.

  • Chelton, D. B., and Schlax M. G. , 1996: Global observations of oceanic Rossby waves. Science, 272 , 234238.

  • Chelton, D. B., 2001: Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14 , 14791498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., Schlax M. G. , Freilich M. H. , and Millif R. F. , 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303 , 978983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., Le Méhauté B. , and Hanes D. M. , 1990: Air–sea interaction. Ocean Engineering Science, B. Le Méhauté and D. M. Hanes, Eds., The Sea Series, Vol. 9, John Wiley, 239–292.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., Dobson F. W. , Smith S. D. , and Anderson R. J. , 1993: On the dependence of sea surface roughness on wave development. J. Phys. Oceanogr., 23 , 21432149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., Graber H. C. , Hauser D. , and Quentin C. , 2003: On the wave age dependence of wind stress over pure wind seas. J. Geophys. Res., 108 , 8062. doi:10.1029/2000JC000715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geernaert, G. L., and Geernaert G. L. , 1999: Theory of air–sea momentum, heat and gas fluxes. Air–Sea Exchange: Physics, Chemistry, and Dynamics, G. L. Geernaert, Ed., Kluwer Academy Publishers 25–48.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., Stoffelen A. , and de Haan S. , 2007: The improved C-band ocean geophysical model function: CMOD-5. J. Geophys. Res., 112 , C03006. doi:10.1029/2006JC003743.

    • Search Google Scholar
    • Export Citation
  • Janssen, P., 2004: The Interaction of Ocean Waves and Wind. Cambridge University Press, 300 pp.

  • Johnson, H. K., Højstrup J. , Vested H. J. , and Larsen S. E. , 1998: On the dependence of sea surface roughness on wind waves. J. Phys. Oceanogr., 28 , 17021716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., Dickinson S. , McPhaden M. J. , and Johnson G. C. , 2001: Ocean currents evident in satellite wind data. Geophys. Res. Lett., 28 , 24692472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W. T., and Tang W. , 1996: Equivalent neutral wind. Jet Propulsion Laboratory Tech. Rep. 96–17, 22 pp.

  • Liu, W. T., Katsaros K. B. , and Businger J. A. , 1979: Bulk parameterization of air–sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36 , 17221735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maat, N., Kraan C. , and Oost W. A. , 1991: The roughness of wind waves. Bound.-Layer Meteor., 54 , 89103.

  • Milliff, R. F., 2005: Forcing global and regional ocean numerical models with ocean surface vector winds from spaceborne observing systems. Satellite Application Facility (SAF) Training Workshop: Second Workshop on Ocean and Sea Ice, EUMETSAT Rep. P.45, 8 pp.

    • Search Google Scholar
    • Export Citation
  • Milliff, R. F., and Morzel J. , 2001: The global distribution of the time-average wind stress curl from NSCAT. J. Atmos. Sci., 58 , 109131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and Obukov A. M. , 1954: Basic regularity in turbulent mixing in the surface layer of the atmosphere. Tr. Geofiz. Inst., Akad. Nauk SSSR, 24 , 163187.

    • Search Google Scholar
    • Export Citation
  • Portabella, M., and Stoffelen A. , 2007: Development of a global scatterometer validation and monitoring. EUMETSAT Ocean and Sea Ice SAF Scientific Rep. SAF/OSI/CDOP/KNMI/SCI/RP/141, 37 pp.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., and Coauthors, 1992: Sea surface wind stress and drag coefficients: The HEXOS results. Bound.-Layer Meteor., 60 , 109142.

  • Stoffelen, A., 1996: Error modeling of scatterometer, in-situ, and ECMWF model winds: A calibration refinement. KNMI Tech. Rep. 193, 44 pp.

    • Search Google Scholar
    • Export Citation
  • Stoffelen, A., 1998a: Scatterometry. Ph.D. thesis, University of Utrecht, 195 pp.

  • Stoffelen, A., 1998b: Error modeling and calibration: Towards the true surface wind speed. J. Geophys. Res., 103 , (C4). 77557766.

  • Stoffelen, A., 2002: Scatterometer Ocean Stress. Proposal to the CM-SAF, KNMI, 12 pp. [Available online at http://www.knmi.nl/scatterometer/.].

    • Search Google Scholar
    • Export Citation
  • Stoffelen, A., Barale V. , and Gade M. , 2008: Scatterometer applications in the European Seas. Remote Sensing of the European Seas, V. Barale and M. Gade, Eds., Springer, 269–282.

    • Search Google Scholar
    • Export Citation
  • Stoffelen, A., van Oldenborgh G. J. , de Kloe J. , Portabella M. , and Verhoef A. , 2006: Development of a scatterometer ocean stress product. EUMETSAT Climate Monitoring SAF Rep., 66 pp.

    • Search Google Scholar
    • Export Citation
  • Taylor, P. K., and Yelland M. J. , 2001: The dependence of sea surface roughness on the height and steepness of the waves. J. Phys. Oceanogr., 31 , 572590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, P. K., Yelland M. J. , and Kent E. C. , 2001: On the accuracy of ocean winds and wind stress. Extended Abstracts, WCRP/SCOR workshop on Intercomparison and Validation of Ocean–Atmosphere Flux Fields, WCRP Rep. 115, World Climate Research Programme (WCRP) and Scientific Committee on Ocean Research (SCOR), 4 pp.

    • Search Google Scholar
    • Export Citation
  • Vialard, J., 2000: Seasonal forecast and its requirements for satellite products. Ocean and Sea Ice SAF Training Workshop, EUMETSAT Rep. P27, 137–143.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 713 162 15
PDF Downloads 447 114 16