Vertical Air Motion from T-REX Radiosonde and Dropsonde Data

Junhong Wang Earth Observing Laboratory, National Center for Atmospheric Research, * Boulder, Colorado

Search for other papers by Junhong Wang in
Current site
Google Scholar
PubMed
Close
,
Jianchun Bian Laboratory for Middle Atmosphere and Global Environment Observation (LAGEO), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Jianchun Bian in
Current site
Google Scholar
PubMed
Close
,
William O. Brown Earth Observing Laboratory, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by William O. Brown in
Current site
Google Scholar
PubMed
Close
,
Harold Cole Earth Observing Laboratory, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Harold Cole in
Current site
Google Scholar
PubMed
Close
,
Vanda Grubišić Desert Research Institute, Reno, Nevada

Search for other papers by Vanda Grubišić in
Current site
Google Scholar
PubMed
Close
, and
Kate Young Earth Observing Laboratory, National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Kate Young in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The primary goal of this study is to explore the potential for estimating the vertical velocity (VV) of air from the surface to the stratosphere, using widely available radiosonde and dropsonde data. The rise and fall rates of radiosondes and dropsondes, respectively, are a combination of the VV of the atmosphere and still-air rise–fall rates. The still-air rise–fall rates are calculated using basic fluid dynamics and characteristics of radiosonde and dropsonde systems. This study validates the technique to derive the VV from radiosonde and dropsonde data and demonstrates its value. This technique can be easily implemented by other users for various scientific applications.

The technique has been applied to the Terrain-induced Rotor Experiment (T-REX) dropsonde and radiosonde data. Comparisons among radiosonde, dropsonde, aircraft, and profiling radar vertical velocities show that the sonde-estimated VV is able to capture and describe events with strong vertical motions (larger than ∼1 m s−1) observed during T-REX. The VV below ∼5 km above ground, however, is overestimated by the radiosonde data. The analysis of derived VVs shows interesting features of gravity waves, rotors, and turbulence. Periodic variations of vertical velocity in the stratosphere, as indicated by the radiosonde data, correspond to the horizontal wavelength of gravity waves with an averaged horizontal wavelength of ∼15 km. Two-dimensional VV structure is described in detail by successive dropsonde deployment.

Corresponding author address: Junhong Wang, NCAR/EOL, P.O. Box 3000, Boulder, CO 80307. Email: junhong@ucar.edu

This article included in the Terrain-Induced Rotor Experiment (T-Rex) special collection.

Abstract

The primary goal of this study is to explore the potential for estimating the vertical velocity (VV) of air from the surface to the stratosphere, using widely available radiosonde and dropsonde data. The rise and fall rates of radiosondes and dropsondes, respectively, are a combination of the VV of the atmosphere and still-air rise–fall rates. The still-air rise–fall rates are calculated using basic fluid dynamics and characteristics of radiosonde and dropsonde systems. This study validates the technique to derive the VV from radiosonde and dropsonde data and demonstrates its value. This technique can be easily implemented by other users for various scientific applications.

The technique has been applied to the Terrain-induced Rotor Experiment (T-REX) dropsonde and radiosonde data. Comparisons among radiosonde, dropsonde, aircraft, and profiling radar vertical velocities show that the sonde-estimated VV is able to capture and describe events with strong vertical motions (larger than ∼1 m s−1) observed during T-REX. The VV below ∼5 km above ground, however, is overestimated by the radiosonde data. The analysis of derived VVs shows interesting features of gravity waves, rotors, and turbulence. Periodic variations of vertical velocity in the stratosphere, as indicated by the radiosonde data, correspond to the horizontal wavelength of gravity waves with an averaged horizontal wavelength of ∼15 km. Two-dimensional VV structure is described in detail by successive dropsonde deployment.

Corresponding author address: Junhong Wang, NCAR/EOL, P.O. Box 3000, Boulder, CO 80307. Email: junhong@ucar.edu

This article included in the Terrain-Induced Rotor Experiment (T-Rex) special collection.

Save
  • Allen, S. J., and Vincent R. A. , 1995: Gravity wave activity in the lower atmosphere: Seasonal and latitudinal variations. J. Geophys. Res., 100 , 13271350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balsley, B. B., Ecklund W. L. , Carter D. A. , Riddle A. C. , and Gage K. S. , 1988: Average vertical motions in the tropical atmosphere observed by a radar wind profiler on Pohnpei (7°N latitude, 157°E longitude). J. Atmos. Sci., 45 , 396405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Contini, D., Mastrantonio G. , Viola A. , and Argentini S. , 2004: Mean vertical motions in the PBL measured by Doppler sodar: Accuracy, ambiguities, and possible improvements. J. Atmos. Oceanic Technol., 21 , 15321544.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corby, G. A., 1957: A preliminary study of atmospheric waves using radiosonde data. Quart. J. Roy. Meteor. Soc., 83 , 4960.

  • Franklin, J., Black M. L. , and Valde K. , 2003: GPS dropwindsonde wind profiles in hurricanes and their operational implications. Wea. Forecasting, 18 , 3244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gage, K. S., McAfee J. R. , Carter D. A. , Ecklund W. L. , Riddle A. C. , Reid G. C. , and Balsley B. B. , 1991: Long-term mean vertical motion over the tropical Pacific: Wind-profiling Doppler radar measurements. Science, 254 , 17711773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gardner, C. S., and Gardner N. F. , 1993: Measurement distortion in aircraft, space shuttle, and balloon observations of atmospheric density and temperature perturbation spectra. J. Geophys. Res., 98 , 10231033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grubišić, V., and Coauthors, 2008: The Terrain-induced Rotor experiment: A field campaign overview including observational highlights. Bull. Amer. Meteor. Soc., 89 , 15131533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hock, T. F., and Franklin J. L. , 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80 , 407420.

  • Holton, J. R., 1992: An Introduction to Dynamic Meteorology. Academic Press, 507 pp.

  • Johansson, C., and Bergström H. , 2005: An auxiliary tool to determine the height of the boundary layer. Bound.-Layer Meteor., 115 , 423432.

  • Kim, Y-J., Eckermann S. D. , and Chun H-Y. , 2003: An overview of the past, present and future of gravity-wave drag parameterization for numerical climate and weather prediction models. Atmos.–Ocean, 41 , 6598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lalas, D. P., and Einaudi F. , 1980: Tropospheric gravity waves: Their diction by and influence on rawinsonde balloon data. Quart. J. Roy. Meteor. Soc., 106 , 855864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacCready P. B. Jr., , 1965: Comparison of some balloon techniques. J. Appl. Meteor., 4 , 504508.

  • McHugh, J. P., Dors I. , Jumper G. Y. , Roadcap J. R. , Murphy E. A. , and Hahn D. C. , 2008: Large variations in balloon ascent rate over Hawaii. J. Geophys. Res., 113 , D15123. doi:10.1029/2007JD009458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., and Lenschow D. H. , 1991: Stratiform cloud formation in the marine boundary layer. J. Atmos. Sci., 48 , 21412158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, T. N., Uma K. N. , Rao D. N. , and Fukao S. , 2008: Understanding the transportation process of tropospheric air entering the stratosphere from direct vertical air motion measurements over Gadanki and Kotoabang. Geophys. Res. Lett., 35 , L15805. doi:10.1029/2008GL034220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Tokay A. , 1991: An explanation for the existence of supercooled water at the top of cold clouds. J. Atmos. Sci., 48 , 10051023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, S. J., 1972: An observational study of lee waves using radiosonde data. Tellus, 6 , 593596.

  • Shupe, M. D., Kollias P. , Poellot M. , and Eloranta E. , 2008: On deriving vertical air motions from cloud radar Doppler spectra. J. Atmos. Oceanic Technol., 25 , 547557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., Kitchen M. , and Hoare P. H. , 1988: A large amplitude gravity wave in the lower stratosphere detected by radiosonde. Quart. J. Roy. Meteor. Soc., 114 , 579594.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., Woods B. K. , Jensen J. , Cooper W. A. , Doyle J. D. , Jiang Q. , and Grubišić V. , 2008: Mountain waves entering the stratosphere. J. Atmos. Sci., 65 , 25432562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and Aberson S. D. , 2006: Extreme vertical winds measured by dropwindsondes in hurricanes. Preprints, 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., 16B.8. [Available online at http://ams.confex.com/ams/pdfpapers/108766.pdf.].

    • Search Google Scholar
    • Export Citation
  • Vaisala, cited. 2004: Vaisala RD93 GPS dropsonde. [Available online at http://www.vaisala.com/weather/products/soundingequipment/dropsonde.].

    • Search Google Scholar
    • Export Citation
  • Van Zandt, T. E., 2000: A brief history of the development of wind-profiling or MST radars. Ann. Geophys., 18 , 740749.

  • Vennard, J. K., 1955: Elementary Fluid Mechanics. 7th ed. John Wiley & Sons, 401 pp.

  • Wang, J., 2005: Evaluation of performance of the dropsonde humidity sensor using data from DYCOMS-II and IHOP_2002. J. Atmos. Oceanic Technol., 22 , 247257.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 912 277 60
PDF Downloads 580 167 39