A Combined Wind Profiler and Polarimetric Weather Radar Method for the Investigation of Precipitation and Vertical Velocities

Michihiro S. Teshiba School of Meteorology, and Atmospheric Radar Research Center, University of Oklahoma, Norman, Oklahoma

Search for other papers by Michihiro S. Teshiba in
Current site
Google Scholar
PubMed
Close
,
Phillip B. Chilson School of Meteorology, and Atmospheric Radar Research Center, University of Oklahoma, Norman, Oklahoma

Search for other papers by Phillip B. Chilson in
Current site
Google Scholar
PubMed
Close
,
Alexander V. Ryzhkov Atmospheric Radar Research Center, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Alexander V. Ryzhkov in
Current site
Google Scholar
PubMed
Close
,
Terry J. Schuur Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Terry J. Schuur in
Current site
Google Scholar
PubMed
Close
, and
Robert D. Palmer School of Meteorology, and Atmospheric Radar Research Center, University of Oklahoma, Norman, Oklahoma

Search for other papers by Robert D. Palmer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A method is presented by which combined S-band polarimetric weather radar and UHF wind profiler observations of precipitation can be used to extract the properties of liquid phase hydrometeors and the vertical velocity of the air through which they are falling. Doppler spectra, which contain the air motion and/or fall speed of hydrometeors, are estimated using the vertically pointing wind profiler. Complementary to these observations, spectra of rain drop size distribution (DSD) are simulated by several parameters as related to the DSD, which are estimated through the two polarimetric parameters of radar reflectivity (ZH) and differential reflectivity (ZDR) from the scanning weather radar. These DSDs are then mapped into equivalent Doppler spectra (fall speeds) using an assumed relationship between the equivolume drop diameter and the drop’s terminal velocity. The method is applied to a set of observations collected on 11 March 2007 in central Oklahoma. In areas of stratiform precipitation, where the vertical wind motion is expected to be small, it was found that the fall speeds obtained from the spectra of the rain DSD agree well with those of the Doppler velocity estimated with the profiler. For those cases when the shapes of the Doppler spectra are found to be similar in shape but shifted in velocity, the velocity offset is attributed to vertical air motion. In convective rainfall, the Doppler spectra of the rain DSD and the Doppler velocity can exhibit significant differences owing to vertical air motions together with atmospheric turbulence. Overall, it was found that the height dependencies of Doppler spectra measured by the profiler combined with vertical profiles of Z, ZDR, and the cross correlation (ρHV) as well as the estimated spectra of raindrop physical terminal fall speeds from the polarimetric radar provide unique insight into the microphysics of precipitation. Vertical air motions (updrafts/downdrafts) can be estimated using such combined measurements.

* Current affiliation: Weathernews Inc., Chiba, Japan.

Corresponding author address: Michihiro S. Teshiba, School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Rm. 5900, Norman, OK 73072-7307. Email: teshiba@arrc.ou.edu

Abstract

A method is presented by which combined S-band polarimetric weather radar and UHF wind profiler observations of precipitation can be used to extract the properties of liquid phase hydrometeors and the vertical velocity of the air through which they are falling. Doppler spectra, which contain the air motion and/or fall speed of hydrometeors, are estimated using the vertically pointing wind profiler. Complementary to these observations, spectra of rain drop size distribution (DSD) are simulated by several parameters as related to the DSD, which are estimated through the two polarimetric parameters of radar reflectivity (ZH) and differential reflectivity (ZDR) from the scanning weather radar. These DSDs are then mapped into equivalent Doppler spectra (fall speeds) using an assumed relationship between the equivolume drop diameter and the drop’s terminal velocity. The method is applied to a set of observations collected on 11 March 2007 in central Oklahoma. In areas of stratiform precipitation, where the vertical wind motion is expected to be small, it was found that the fall speeds obtained from the spectra of the rain DSD agree well with those of the Doppler velocity estimated with the profiler. For those cases when the shapes of the Doppler spectra are found to be similar in shape but shifted in velocity, the velocity offset is attributed to vertical air motion. In convective rainfall, the Doppler spectra of the rain DSD and the Doppler velocity can exhibit significant differences owing to vertical air motions together with atmospheric turbulence. Overall, it was found that the height dependencies of Doppler spectra measured by the profiler combined with vertical profiles of Z, ZDR, and the cross correlation (ρHV) as well as the estimated spectra of raindrop physical terminal fall speeds from the polarimetric radar provide unique insight into the microphysics of precipitation. Vertical air motions (updrafts/downdrafts) can be estimated using such combined measurements.

* Current affiliation: Weathernews Inc., Chiba, Japan.

Corresponding author address: Michihiro S. Teshiba, School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Rm. 5900, Norman, OK 73072-7307. Email: teshiba@arrc.ou.edu

Save
  • Armijo, L., 1969: A theory for the determination of wind and precipitation velocities with Doppler radars. J. Atmos. Sci., 26 , 570573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., Schwartz B. E. , Szoke E. J. , and Koch S. E. , 2004: The value of wind profiler data in U.S. weather forecasting. Bull. Amer. Meteor. Soc., 85 , 18711886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., and Houze R. A. Jr., 1991: Midlevel vorticity structure of the 10–11 June 1985 squall line. Mon. Wea. Rev., 119 , 30663079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., and Houze R. A. Jr., 1993: Kinematics and microphysics of the transition zone of the 10–11 June 1985 squall line. J. Atmos. Sci., 50 , 30913110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., Hrebenach S. D. , Chang C-F. , and Brandes E. A. , 1994: Synthetic dual-Doppler analysis of mesoscale convective systems. Mon. Wea. Rev., 122 , 21052124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., 1990: Evolution and structure of the 6–7 May 1985 mesoscale convective system and associated vortex. Mon. Wea. Rev., 118 , 109127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., Zhang G. , and Vivekanandan J. , 2004: Drop size distribution retrieval with polarimetric radar: Model and application. J. Appl. Meteor., 43 , 461475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and Houze R. A. Jr., 1994: The transition zone and secondary maximum of radar reflectivity behind a midlatitude squall line: Results retrieved from Doppler radar data. J. Atmos. Sci., 51 , 27332755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and Wexler R. , 1968: The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteor., 7 , 105113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, Q., Zhang G. , Brandes E. A. , Schuur T. , Ryzhkov A. , and Ikeda K. , 2008: Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. J. Appl. Meteor. Climatol., 47 , 22382255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carter, D. A., Gage K. S. , Ecklund W. L. , Angevine W. M. , Johnston P. E. , Riddle A. C. , Wilson J. , and Williams C. R. , 1995: Developments in UHF lower tropospheric wind profiling at NOAA’s Aeronomy Laboratory. Radio Sci., 30 , 9771001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chilson, P. B., Zhang G. , Schuur T. , Kanofsky L. M. , Teshiba M. S. , Cao Q. , Every M. V. , and Ciach G. , 2007: Coordinated in-situ and remote sensing precipitation measurements at the Kessler Farm Field Laboratory in central Oklahoma. Preprints, 33rd Int. Conf. on Radar Meteorology, Cairns, Queensland, Australia, Amer. Meteor. Soc., P8A.4. [Available online at http://ams.confex.com/ams/pdfpapers/123396.pdf].

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., Williams C. R. , Rajopadhyaya D. K. , Avery S. K. , Gage K. S. , and May P. T. , 2000: Drop-size distribution characteristics in tropical mesoscale convective systems. J. Appl. Meteor., 39 , 760777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and Zrnić D. S. , 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • Doviak, R. J., Bringi V. , Ryzhkov A. , Zahrai A. , and Zrnić D. , 2000: Considerations for polarimetric upgrades to operational WSR-88D radars. J. Atmos. Oceanic Technol., 17 , 257278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foote, G. B., and du Toit P. S. , 1969: Terminal velocity of raindrops aloft. J. Appl. Meteor., 8 , 249253.

  • Fukao, S., Wakasugi K. , Sato T. , Morimoto S. , Tsuda T. , Hirota I. , Kimura I. , and Kato S. , 1985: Direct measurement of air and precipitation particle motion by very high frequency Doppler radar. Nature, 316 , 712714.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gage, K. S., Williams C. R. , Ecklund W. L. , and Johnson P. E. , 1999: Use of two profilers during MCTEX for unambiguous identification of Bragg scattering and Rayleigh scattering. J. Atmos. Sci., 56 , 36793691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gossard, E. E., Wolfe D. E. , Moran K. P. , Paulus R. A. , Anderson K. D. , and Rogers L. T. , 1998: Measurement of clear-air gradients and turbulence properties with radar wind profiles. J. Atmos. Oceanic Technol., 15 , 321342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hane, C. E., and Jorgensen D. P. , 1995: Dynamic aspects of a distinctly three-dimensional mesoscale convective system. Mon. Wea. Rev., 123 , 31943214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze R. A. Jr., , Biggerstaff M. I. , Rutledge S. A. , and Smull B. F. , 1989: Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc., 70 , 608619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze R. A. Jr., , Smull B. F. , and Dodge P. , 1990: Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Wea. Rev., 118 , 613654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joss, J., and Waldvogel A. , 1970: Raindrop size distribution and Doppler velocities. Preprints, 14th Conf. on Radar Meteorology, Tuscon, AZ, Amer. Meteor. Soc., 153–156.

    • Search Google Scholar
    • Export Citation
  • Kanofsky, L., and Chilson P. B. , 2008: An analysis of errors in drop size distribution retrievals and rain bulk parameters with a UHF wind profiling radar and a two-dimensional video disdrometer. J. Atmos. Oceanic Technol., 25 , 22822292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lhermite, R. M., 1970: Dual-Doppler radar observation of convective storm circulation. Preprints, 14th Conf. on Radar Meteorology, Tucson, AZ, Amer. Meteor. Soc., 139–144.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., MacKinnon A. D. , Vincent R. A. , and May P. T. , 2004: Raindrop size distribution retrievals from a VHF boundary layer profiler. J. Atmos. Oceanic Technol., 21 , 4560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, P. T., and Keenan T. D. , 2005: Evaluation of microphysical retrievals from polarimetric radar with wind profiler data. J. Appl. Meteor., 44 , 827838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, P. T., Jameson A. R. , Keenan T. D. , and Johnson P. E. , 2001: A comparison between polarimetric radar and wind profiler observations of precipitation in tropical showers. J. Appl. Meteor., 40 , 17021717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, P. T., Jameson A. R. , Keenan T. D. , Johnson P. E. , and Lucas C. , 2002: Combined wind profiler/polarimetric radar studies of the vertical motion and microphysical characteristics of tropical sea-breeze thunderstorms. Mon. Wea. Rev., 130 , 22282239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mewes, J. J., and Shapiro A. , 2002: Use of the vorticity equation in dual-Doppler analysis of the vertical velocity field. J. Atmos. Oceanic Technol., 19 , 543567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., 1997: Doppler radar spectral width broadening due to beamwidth and wind shear. Ann. Geophys., 15 , 786796.

  • Rajopadhyaya, D. K., May P. T. , and Vincent R. A. , 1994: The retrieval of ice particle size information from VHF wind profiler Doppler spectra. J. Atmos. Oceanic Technol., 11 , 15591568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., 1964: An extension of the Z-R relation for Doppler radar. Preprints, 11th Weather Radar Conf., Boston, MA, Amer. Meteor. Soc., 158–169.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., Giangrande S. E. , and Schuur T. J. , 2005a: Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteor., 44 , 502515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., Schuur T. J. , Burgess D. W. , Giangrande S. , and Zrnic D. S. , 2005b: The joint polarization experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86 , 809824.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saffle, R. E., Istok M. J. , and Cate G. S. , 2007: NEXRAD product improvement—Update 2007. Preprints, 23rd Conf. of IIPS, San Antonio, TX, Amer. Meteor. Soc., 5B.1. [Available online at http://ams.confex.com/ams/pdfpapers/117819.pdf].

    • Search Google Scholar
    • Export Citation
  • Schafer, R., Avery S. , May P. , Rajopadhyaya D. , and Williams C. , 2002: Estimation of rainfall drop size distributions from dual-frequency wind profiler spectra using deconvolution and a nonlinear least squares fitting technique. J. Atmos. Oceanic Technol., 19 , 864874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scharfenberg, K. A., and Coauthors, 2005: The joint polarization experiment: Polarimetric radar in forecasting and warning decision making. Wea. Forecasting, 20 , 775788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, A., and Mewes J. J. , 1999: New formulations of dual-Doppler wind analysis. J. Atmos. Oceanic Technol., 16 , 782792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smull, B. F., and Houze R. A. Jr., 1987: Dual-Doppler radar analysis of a midlatitude a squall line with a trailing region of stratiform rain. J. Atmos. Sci., 44 , 21282149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straka, J. M., Zrnić D. S. , and Ryzhkov A. V. , 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39 , 13411372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakasugi, K., Mizutani A. , Matsuo M. , Fukao S. , and Kato S. , 1986: A direct method for deriving drop-size distribution and vertical air velocities from VHF Doppler radar spectra. J. Atmos. Oceanic Technol., 3 , 623629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waldteufel, P., and Corbin H. , 1979: On the analysis of single-Doppler radar data. J. Appl. Meteor., 18 , 532542.

  • Williams, C. R., 2002: Simultaneous ambient air motion and raindrop size distributions retrieved from UHF vertical incident profiler observations. Radio Sci., 37 , 1024. doi:10.1029/2000RS002603.

    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., Szyrmer W. , Bell C. , and Fabry F. , 2005: Modeling of the melting layer. Part III: The density effect. J. Atmos. Sci., 62 , 37053723.

  • Zhang, G., Vivekanandan J. , and Brandes E. A. , 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39 , 830841.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 201 102 10
PDF Downloads 151 69 3