Toward the Use of Integral Radar Volume Descriptors for Quantitative Areal Precipitation Estimation: Results from Pseudoradar Observations

Silke Trömel Meteorological Institute, University of Bonn, Bonn, Germany

Search for other papers by Silke Trömel in
Current site
Google Scholar
PubMed
Close
,
Clemens Simmer Meteorological Institute, University of Bonn, Bonn, Germany

Search for other papers by Clemens Simmer in
Current site
Google Scholar
PubMed
Close
,
Jürgen Braun Institute for Numerical Simulation, University of Bonn, Bonn, Germany

Search for other papers by Jürgen Braun in
Current site
Google Scholar
PubMed
Close
,
Thomas Gerstner Institute for Numerical Simulation, University of Bonn, Bonn, Germany

Search for other papers by Thomas Gerstner in
Current site
Google Scholar
PubMed
Close
, and
Michael Griebel Institute for Numerical Simulation, University of Bonn, Bonn, Germany

Search for other papers by Michael Griebel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The central objective of this analysis is to significantly enhance the quality of radar-derived precipitation estimates by as fully as possible exploiting the information contained in the spatial and temporal variability of 3D radar volume data. The results presented are based on pseudoradar data and rain rates of a regional weather forecasting model and 12 true radiosoundings as well. Two approaches are pursued: the first approach estimates total rainfall from an individual storm over its lifetime, whereas the second approach assesses the areawide instantaneous rainfall from a multiplicity of such storms by the use of measurements of the areal coverage of the storms exceeding a threshold radar reflectivity. The concept is extended by adding more predictors to significantly enhance the rainfall estimates. The horizontal expected value and the horizontal standard deviation of enclosed reflectivities at the ground, the mean brightband fraction and its trend, the fractional area with reflectivities exceeding a threshold τ, and an orographic rainfall amplifier provide relative errors smaller than 10% in approximately 75% of the considered rain events in the first approach. In the second approach, a relative error is achieved that is below 10% in approximately 63% elements of the test set.

Corresponding author address: Silke Trömel, Meteorological Institute, University of Bonn, Auf dem Hügel 20, D-53121 Bonn, Germany. Email: silke.troemel@uni-bonn.de

Abstract

The central objective of this analysis is to significantly enhance the quality of radar-derived precipitation estimates by as fully as possible exploiting the information contained in the spatial and temporal variability of 3D radar volume data. The results presented are based on pseudoradar data and rain rates of a regional weather forecasting model and 12 true radiosoundings as well. Two approaches are pursued: the first approach estimates total rainfall from an individual storm over its lifetime, whereas the second approach assesses the areawide instantaneous rainfall from a multiplicity of such storms by the use of measurements of the areal coverage of the storms exceeding a threshold radar reflectivity. The concept is extended by adding more predictors to significantly enhance the rainfall estimates. The horizontal expected value and the horizontal standard deviation of enclosed reflectivities at the ground, the mean brightband fraction and its trend, the fractional area with reflectivities exceeding a threshold τ, and an orographic rainfall amplifier provide relative errors smaller than 10% in approximately 75% of the considered rain events in the first approach. In the second approach, a relative error is achieved that is below 10% in approximately 63% elements of the test set.

Corresponding author address: Silke Trömel, Meteorological Institute, University of Bonn, Auf dem Hügel 20, D-53121 Bonn, Germany. Email: silke.troemel@uni-bonn.de

Save
  • Atlas, D., Rosenfeld D. , and Short D. A. , 1990: The estimation of convective rainfall by area integrals. 1. The theoretical and empirical basis. J. Geophys. Res., 95 , 21532160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bachner, S., Kapala A. , and Simmer C. , 2008: Evaluation of daily precipitation characteristics and their sensitivity to parameterizations. Meteor. Z., 17 , 407419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barros, A. P., and Lettenmaier D. P. , 1993: Dynamic modeling of the spatial distribution of precipitation in remote mountainous areas. Mon. Wea. Rev., 121 , 11951214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bungartz, H-J., and Griebel M. , 2004: Sparse grids. Acta Numerica, 13 , 147269.

  • Crewell, S., and Coauthors, 2008: The general observation period 2007 within the priority program on quantitative precipitation forecasting: Concepts and first results. Meteor. Z., 17 , 849866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cucker, F., and Smale S. , 2001: On the mathematical foundations of learning. Bull. Amer. Math Soc., 39 , 149.

  • Doms, G., and Schättler U. , 2002: A description of the Nonhydrostatic Regional Model LM. Part I: Dynamics and numerics. Consortium for Small-Scale Modelling Rep. LM F90 2.18, 134 pp.

    • Search Google Scholar
    • Export Citation
  • Doms, G., Förstner J. , Heise E. , Herzog H-J. , Raschendorfer M. , Schrodin R. , Reinhardt T. , and Vogel G. , 2005: A description of the Nonhydrostatic Regional Model LM. Part II: Physical parameterization. Consortium for Small-Scale Modelling Rep. LM F90 3.16, 118 pp.

    • Search Google Scholar
    • Export Citation
  • Doneaud, A. A., Smith P. L. , Dennis A. S. , and Sengupta S. , 1981: A simple method for estimating convective rain volume over an area. Water Resour. Res., 17 , 16761682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, F., Austin G. L. , and Tees D. , 1992: The accuracy of rainfall estimates by radar as a function of range. Quart. J. Roy. Meteor. Soc., 118 , 435453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcke, J., 2004: Maschinelles Lernen durch Funktionsrekonstruktion mit verallgemeinerten dünnen Gittern (in German). Doktorarbeit, Institut für Numerische Simulation Universität Bonn, 140 pp.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1993: Cloud Dynamics. Academic Press, 570 pp.

  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulation. Meteor. Monogr., No. 10, Amer. Meteor. Soc., 84 pp.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., and Smith J. A. , 2002: Radar hydrology: Rainfall estimation. Adv. Water Resour., 25 , 13871394.

  • Kraus, H., 2001: Die Atmosphäre der Erde. Springer Verlag, 470 pp.

  • Lopez, R. E., Atlas D. , Rosenfeld D. , Thomas J. L. , Blanchard D. O. , and Holle R. L. , 1989: Estimation of areal rainfall using the radar echo area time integral. J. Appl. Meteor., 28 , 11621175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and Palmer W. M. , 1948: The distribution of raindrops with size. J. Meteor., 5 , 165166.

  • Marshall, J. S., Hitschfeld W. , and Gunn K. L. S. , 1955: Advances in radar weather. Adv. Geophys., 2 , 156.

  • Paulat, M., Frei C. , Hagen M. , and Wernli H. , 2008: A gridded dataset of hourly precipitation in Germany: Its construction, climatology and application. Meteorol. Z., 17 , 719732.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rinne, H., 1997: Taschenbuch der Statistik: Für Wirtschafts- und Sozialwissenschaften. Deutsch, 650 pp.

  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33 , 645671.

  • Rosenfeld, D., Atlas D. , and Short D. A. , 1990: The estimation of convective rainfall by area integrals. 2. The Height-Area Rainfall Threshold (HART) method. J. Geophys. Res., 95 , 21612176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., Amitai E. , and Wolff D. B. , 1995a: Classification of rain regimes by the three-dimensional properties of reflectivity fields. J. Appl. Meteor., 34 , 198211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., Amitai E. , and Wolff D. B. , 1995b: Improved accuracy of radar WPMM estimation rainfall upon application of objective classification criteria. J. Appl. Meteor., 34 , 212223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., Giangrande S. E. , and Schuur T. J. , 2005: Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteor., 44 , 502515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sauvageot, H., 1992: Radar Meteorology. Artech House, 384 pp.

  • Sawyer, J. S., 1956: The physical and dynamical problems of orographic rain. Weather, 11 , 375381.

  • Schönwiese, C-D., and Rapp J. , 1997: Climate Trend Atlas of Europe Based on Observations, 1891–1990. Kluwer Academic, 240 pp.

  • Simon, J. L., 2004: Tracking of radar-detected precipitation-centroids using scale-space methods for automatic focusing. Diplomarbeit, Mathematisch-Naturwissenschaftliche Fakultät der Rheinischen Friedrich-Wilhelm-Universität zu Bonn, 89 pp.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1979: The influence of mountains on the atmosphere. Advances in Geophysics, Vol. 21, Academic Press, 87–230.

  • von Storch, H., and Zwiers F. W. , 1999: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Yserentant, H., 1992: Hierarchical bases. Proc. Second Int. Conf. on Industrial and Applied Mathematics, Washington, D.C., Society for Industrial and Applied Mathematics, 281–290.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 131 42 3
PDF Downloads 96 16 0