Intercalibration of GOES-11 and GOES-12 Water Vapor Channels with MetOp IASI Hyperspectral Measurements

Likun Wang Perot Systems Government Services, Fairfax, Virginia

Search for other papers by Likun Wang in
Current site
Google Scholar
PubMed
Close
,
Changyong Cao NOAA/NESDIS/STAR, Camp Springs, Maryland

Search for other papers by Changyong Cao in
Current site
Google Scholar
PubMed
Close
, and
Mitch Goldberg NOAA/NESDIS/STAR, Camp Springs, Maryland

Search for other papers by Mitch Goldberg in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The calibrated radiances from geostationary water vapor channels play an important role for weather forecasting, data assimilation, and climate studies. Therefore, better understanding the data quality for radiance measurements and independently assessing their onboard calibrations become increasingly more important. In this study, the Infrared Atmospheric Sounding Interferometer (IASI) hyperspectral measurements on the polar-orbiting Meteorological Operation-A (MetOp-A) satellite are used to assess the calibration accuracy of water vapor channels on the Geostationary Operational Environmental Satellite-11 (GOES-11) and GOES-12 imagers with one year of data. The near-simultaneous nadir observations with homogeneous scenes from IASI and GOES imagers are spatially collocated. The IASI spectra are convolved with the GOES imager spectral response functions (SRFs) to compare with GOES imager observations. Assuming that IASI is well calibrated and can be used as an on-orbit radiometric reference standard, then the GOES imager water vapor channels have an overall relative calibration bias to IASI of better than 0.3 K (with a standard deviation of ∼0.2 K) at the brightness temperature (BT) range of 240–260 K, which meets the design specification (1.0-K calibration accuracy for infrared channels). This study further demonstrates the technique of using hyperspectral radiance measurements in a polar-orbiting satellite to accurately assess broadband radiometer calibration of the GOES imager, which also provides an effective way for monitoring sensor performance over time. In addition, the potential of using the intercalibration results to integrate and merge data from different observing systems involving both IASI and different GOES imagers to create consistent, seamless global products is explored. The method presented here can potentially be applied to other instruments on both polar-orbiting and geostationary satellites for generating long-term time series.

Corresponding author address: Dr. Likun Wang, 5200 Auth Rd., Rm. 810, Camp Springs, MD 20746. Email: likun.wang@noaa.gov

Abstract

The calibrated radiances from geostationary water vapor channels play an important role for weather forecasting, data assimilation, and climate studies. Therefore, better understanding the data quality for radiance measurements and independently assessing their onboard calibrations become increasingly more important. In this study, the Infrared Atmospheric Sounding Interferometer (IASI) hyperspectral measurements on the polar-orbiting Meteorological Operation-A (MetOp-A) satellite are used to assess the calibration accuracy of water vapor channels on the Geostationary Operational Environmental Satellite-11 (GOES-11) and GOES-12 imagers with one year of data. The near-simultaneous nadir observations with homogeneous scenes from IASI and GOES imagers are spatially collocated. The IASI spectra are convolved with the GOES imager spectral response functions (SRFs) to compare with GOES imager observations. Assuming that IASI is well calibrated and can be used as an on-orbit radiometric reference standard, then the GOES imager water vapor channels have an overall relative calibration bias to IASI of better than 0.3 K (with a standard deviation of ∼0.2 K) at the brightness temperature (BT) range of 240–260 K, which meets the design specification (1.0-K calibration accuracy for infrared channels). This study further demonstrates the technique of using hyperspectral radiance measurements in a polar-orbiting satellite to accurately assess broadband radiometer calibration of the GOES imager, which also provides an effective way for monitoring sensor performance over time. In addition, the potential of using the intercalibration results to integrate and merge data from different observing systems involving both IASI and different GOES imagers to create consistent, seamless global products is explored. The method presented here can potentially be applied to other instruments on both polar-orbiting and geostationary satellites for generating long-term time series.

Corresponding author address: Dr. Likun Wang, 5200 Auth Rd., Rm. 810, Camp Springs, MD 20746. Email: likun.wang@noaa.gov

Save
  • Berk, A., Anderson G. P. , Acharya P. K. , Chetwynd J. H. , Bernstein L. S. , Shettle E. P. , Matthew M. W. , and Adler-Golden S. M. , 2001: MODTRAN4 version 2 user’s manual. Air Force Research Laboratory, 98 pp.

    • Search Google Scholar
    • Export Citation
  • Blumstein, D., and Coauthors, 2004: IASI instrument: Technical overview and measured performances. Infrared Spaceborne Remote Sensing XII, M. Strojnik, Ed., International Society for Optical Engineering (SPIE Proceedings, Vol. 5543), 196–207.

    • Search Google Scholar
    • Export Citation
  • Blumstein, D., Tournier B. , Cayla F. R. , Phulpin T. , Fjortoft R. , Buil C. , and Ponce G. , 2007: In-flight performance of the infrared atmospheric sounding interferometer (IASI) on MetOp-A. Atmospheric and Environmental Remote Sensing Data Processing and Utilization III: Readiness for GEOSS, M. D. Goldberg et al., Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 6684), 66840H, doi:10.1117/12.734162.

    • Search Google Scholar
    • Export Citation
  • Bréon, F-M., Jackson D. L. , and Bates J. J. , 2000: Calibration of the Meteosat water vapor channel using collocated NOAA/HIRS 12 measurements. J. Geophys. Res., 105 , 1192511933.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, C., Xu H. , Sullivan J. , McMillin L. , Ciren P. , and Hou Y-T. , 2005: Intersatellite radiance biases for the High-Resolution Infrared Radiation Sounders (HIRS) on board NOAA-15, -16, and -17 from simultaneous nadir observations. J. Atmos. Oceanic Technol., 22 , 381395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clough, S. A., Kneizys F. X. , Rothman L. S. , and Gallery W. O. , 1981: Atmospheric spectral transmittance and radiance: FASCOD1B. Atmospheric transmission, International Society for Optical Engineering (SPIE Proceedings, Vol. 277), 152–166.

    • Search Google Scholar
    • Export Citation
  • Desbiens, R., Genest J. , and Tremblay P. , 2002: Radiometry in line-shape modeling of Fourier-transform spectrometers. Appl. Opt., 41 , 14241432.

  • Garand, L., and Hallé J. , 1997: Assimilation of clear- and cloudy-sky upper-tropospheric humidity estimates using GOES-8 and GOES-9 data. J. Atmos. Oceanic Technol., 14 , 10361054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunshor, M. M., Schmit T. J. , and Menzel W. P. , 2004: Intercalibration of the infrared window and water vapor channels on operational geostationary environmental satellites using a single polar-orbiting satellite. J. Atmos. Oceanic Technol., 21 , 6168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunshor, M. M., Schmit T. J. , Menzel W. P. , and Tobin D. C. , 2009: Intercalibration of broadband geostationary imagers using AIRS. J. Atmos. Oceanic Technol., 26 , 746758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and Soden B. J. , 2000: Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25 , 441475.

  • Jedlovec, G. J., Lerner J. A. , and Atkinson R. J. , 2000: A satellite-derived upper-tropospheric water vapor transport index for climate studies. J. Appl. Meteor., 39 , 1541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, R., Janowiak J. , and Huffman G. , 2001: Latitudinally and seasonally dependent zenith-angle corrections for geostationary satellite IR brightness temperatures. J. Appl. Meteor., 40 , 689703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K., 2008: Calibration assessment of ISCCP geostationary infrared observations using HIRS. J. Atmos. Oceanic Technol., 25 , 183195.

  • Larar, A. M., and Coauthors, 2008: The Joint Airborne IASI Validation Experiment (JAIVEx) and select contributions from NAST-I. Preprints, Fourth Symp. on Future National Operational Environmental Satellites, New Orleans, LA, Amer. Meteor. Soc., P1.17.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., and Purdom J. F. , 1994: Introducing GOES-I: The first of a new generation of geostationary operational environmental satellites. Bull. Amer. Meteor. Soc., 75 , 757781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., Prins E. M. , Schreiner A. J. , and Gurka J. J. , 2001: Introducing the GOES-M imager. Natl. Wea. Dig., 25 , 2837.

  • Soden, B. J., and Bretherton F. P. , 1993: Upper tropospheric humidity from the GOES 6.7 μm channel: Method and climatology for July 1987. J. Geophys. Res., 98 , 1666916688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sohn, B. J., Schmetz J. , Tjemkes S. , Koenig M. , Lutz H. , Arriaga A. , and Chung E. S. , 2000: Intercalibration of the Meteosat-7 water vapor channel with SSM/T-2. J. Geophys. Res., 105 , 1567315680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sohn, B. J., Schmetz J. , and Chung E-S. , 2008: Moistening processes in the tropical upper troposphere observed from Meteosat measurements. J. Geophys. Res., 113 , D13109. doi:10.1029/2007JD009527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Space Systems Loral, 1996: GOES I-M DataBook. Space Systems Loral Tech. Rep. DRL-101-08, 196 pp.

  • Strow, L. L., Hannon S. , Weiler M. , Overoye K. , Gaiser S. L. , and Aumann H. H. , 2003: Prelaunch spectral calibration of the Atmospheric Infrared Sounder (AIRS). IEEE Trans. Geosci. Remote Sens., 41 , 274286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, H., Read W. G. , Jiang J. H. , Waters J. W. , Wu D. L. , and Fetzer E. J. , 2006: Enhanced positive water vapor feedback associated with tropical deep convection: New evidence from Aura MLS. Geophys. Res. Lett., 33 , L05709. doi:10.1029/2005GL025505.

    • Search Google Scholar
    • Export Citation
  • Tian, B., Soden B. J. , and Wu X. , 2004: Diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere: Satellites versus a general circulation model. J. Geophys. Res., 109 , D10101. doi:10.1029/2003JD004117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tobin, D. C., Revercomb H. E. , Moeller C. C. , and Pagano T. , 2006: Use of Atmospheric Infrared Sounder high–spectral resolution spectra to assess the calibration of Moderate resolution Imaging Spectroradiometer on EOS Aqua. J. Geophys. Res., 111 , D09S05. doi:10.1029/2005JD006095.

    • Search Google Scholar
    • Export Citation
  • Tobin, D. C., and Coauthors, 2007: Radiometric and spectral validation of Infrared Atmospheric Sounding Interferometer (IASI) observations. 2007 Conf. on Characterization and Radiometric Calibration for Remote Sensing, Logan, UT Space Dynamics Laboratory.

    • Search Google Scholar
    • Export Citation
  • Tournier, B., Blumstein D. , Cayla F-R. , and Chalon G. , 2002: IASI level 0 and 1 processing algorithms description. Proc. Twelfth Int. TOVS Study Conf., Victoria, Australia, International TOVS Working Group, 12 pp. [Available online at http://cimss.ssec.wisc.edu/itwg/itsc/itsc12/presentations/6d5_B.Tournier.doc].

    • Search Google Scholar
    • Export Citation
  • Wang, L., and Cao C. , 2008: On-orbit calibration assessment of AVHRR longwave channels on MetOp-A using IASI. IEEE Trans. Geosci. Remote Sens., 46 , 40054013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., Cao C. , and Ciren P. , 2007: Assessing NOAA-16 HIRS radiance accuracy using simultaneous nadir overpass observations from AIRS. J. Atmos. Oceanic Technol., 24 , 15461561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weinreb, M. P., Jamison M. , Fulton N. , Chen Y. , Johnson J. X. , Bremer J. , Smith C. , and Baucom J. , 1997: Operational calibration of Geostationary Operational Environmental Satellite-8 and -9 imagers and sounders. Appl. Opt., 36 , 68956904.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, F., 2007: Advances in radiative transfer modeling in support of satellite data assimilation. J. Atmos. Sci., 64 , 37993807.

  • Wimmers, A. J., and Moody J. L. , 2001: A fixed-layer estimation of upper tropospheric specific humidity from the GOES water vapor channel: Parameterization and validation of the altered brightness temperature product. J. Geophys. Res., 106 , 1711517132.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 170 62 4
PDF Downloads 119 39 3