Assessment of Cloudsat Reflectivity Measurements and Ice Cloud Properties Using Ground-Based and Airborne Cloud Radar Observations

A. Protat The Centre for Australian Weather and Climate Research, Melbourne, Victoria, Australia, and Centre d’étude des Environnements Terrestre et Planétaires, Vélizy, France

Search for other papers by A. Protat in
Current site
Google Scholar
PubMed
Close
,
D. Bouniol Centre National de Recherches Météorologiques, Groupe d’étude de l’Atmosphère Météorologique, Toulouse, France

Search for other papers by D. Bouniol in
Current site
Google Scholar
PubMed
Close
,
J. Delanoë University of Reading, Reading, United Kingdom

Search for other papers by J. Delanoë in
Current site
Google Scholar
PubMed
Close
,
E. O’Connor University of Reading, Reading, United Kingdom

Search for other papers by E. O’Connor in
Current site
Google Scholar
PubMed
Close
,
P. T. May The Centre for Australian Weather and Climate Research, Melbourne, Victoria, Australia

Search for other papers by P. T. May in
Current site
Google Scholar
PubMed
Close
,
A. Plana-Fattori Centre d’étude des Environnements Terrestre et Planétaires, Vélizy, France

Search for other papers by A. Plana-Fattori in
Current site
Google Scholar
PubMed
Close
,
A. Hasson Centre d’étude des Environnements Terrestre et Planétaires, Vélizy, France

Search for other papers by A. Hasson in
Current site
Google Scholar
PubMed
Close
,
U. Görsdorf Deutscher Wetterdienst, Meteorologisches Observatorium, Lindenberg, Germany

Search for other papers by U. Görsdorf in
Current site
Google Scholar
PubMed
Close
, and
A. J. Heymsfield National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by A. J. Heymsfield in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A quantitative assessment of Cloudsat reflectivities and basic ice cloud properties (cloud base, top, and thickness) is conducted in the present study from both airborne and ground-based observations. Airborne observations allow direct comparisons on a limited number of ocean backscatter and cloud samples, whereas the ground-based observations allow statistical comparisons on much longer time series but with some additional assumptions. Direct comparisons of the ocean backscatter and ice cloud reflectivities measured by an airborne cloud radar and Cloudsat during two field experiments indicate that, on average, Cloudsat measures ocean backscatter 0.4 dB higher and ice cloud reflectivities 1 dB higher than the airborne cloud radar. Five ground-based sites have also been used for a statistical evaluation of the Cloudsat reflectivities and basic cloud properties. From these comparisons, it is found that the weighted-mean difference ZCloudsatZGround ranges from −0.4 to +0.3 dB when a ±1-h time lag around the Cloudsat overpass is considered. Given the fact that the airborne and ground-based radar calibration accuracy is about 1 dB, it is concluded that the reflectivities of the spaceborne, airborne, and ground-based radars agree within the expected calibration uncertainties of the airborne and ground-based radars. This result shows that the Cloudsat radar does achieve the claimed sensitivity of around −29 dBZ. Finally, an evaluation of the tropical “convective ice” profiles measured by Cloudsat has been carried out over the tropical site in Darwin, Australia. It is shown that these profiles can be used statistically down to approximately 9-km height (or 4 km above the melting layer) without attenuation and multiple scattering corrections over Darwin. It is difficult to estimate if this result is applicable to all types of deep convective storms in the tropics. However, this first study suggests that the Cloudsat profiles in convective ice need to be corrected for attenuation by supercooled liquid water and ice aggregates/graupel particles and multiple scattering prior to their quantitative use.

Corresponding author address: Alain Protat, Centre for Australian Weather and Climate Research (CAWCR), 700 Collins Street, Docklands, Melbourne, VIC 3008, Australia. Email: a.protat@bom.gov.au

Abstract

A quantitative assessment of Cloudsat reflectivities and basic ice cloud properties (cloud base, top, and thickness) is conducted in the present study from both airborne and ground-based observations. Airborne observations allow direct comparisons on a limited number of ocean backscatter and cloud samples, whereas the ground-based observations allow statistical comparisons on much longer time series but with some additional assumptions. Direct comparisons of the ocean backscatter and ice cloud reflectivities measured by an airborne cloud radar and Cloudsat during two field experiments indicate that, on average, Cloudsat measures ocean backscatter 0.4 dB higher and ice cloud reflectivities 1 dB higher than the airborne cloud radar. Five ground-based sites have also been used for a statistical evaluation of the Cloudsat reflectivities and basic cloud properties. From these comparisons, it is found that the weighted-mean difference ZCloudsatZGround ranges from −0.4 to +0.3 dB when a ±1-h time lag around the Cloudsat overpass is considered. Given the fact that the airborne and ground-based radar calibration accuracy is about 1 dB, it is concluded that the reflectivities of the spaceborne, airborne, and ground-based radars agree within the expected calibration uncertainties of the airborne and ground-based radars. This result shows that the Cloudsat radar does achieve the claimed sensitivity of around −29 dBZ. Finally, an evaluation of the tropical “convective ice” profiles measured by Cloudsat has been carried out over the tropical site in Darwin, Australia. It is shown that these profiles can be used statistically down to approximately 9-km height (or 4 km above the melting layer) without attenuation and multiple scattering corrections over Darwin. It is difficult to estimate if this result is applicable to all types of deep convective storms in the tropics. However, this first study suggests that the Cloudsat profiles in convective ice need to be corrected for attenuation by supercooled liquid water and ice aggregates/graupel particles and multiple scattering prior to their quantitative use.

Corresponding author address: Alain Protat, Centre for Australian Weather and Climate Research (CAWCR), 700 Collins Street, Docklands, Melbourne, VIC 3008, Australia. Email: a.protat@bom.gov.au

Save
  • Battaglia, A., Ajewole M. O. , and Simmer C. , 2005: Multiple scattering effects due to hydrometeors on precipitation radar systems. Geophys. Res. Lett., 32 , L19801. doi:10.1029/2005GL023810.

    • Search Google Scholar
    • Export Citation
  • Battaglia, A., Ajewole M. O. , and Simmer C. , 2007: Evaluation of radar multiple scattering effects in Cloudsat configuration. Atmos. Chem. Phys., 7 , 17191730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouniol, D., Protat A. , Plana-Fattori A. , Giraud M. , Vinson J-P. , and Grand N. , 2008: Comparison of airborne and spaceborne 95-GHz radar reflectivity and evidence of multiple scattering effects in spaceborne measurements. J. Atmos. Oceanic Technol., 25 , 19831995.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., Huang G-J. , Chandrasekar V. , and Keenan T. D. , 2001: An areal rainfall estimator using differential propagation phase: Evaluation using a C-band radar and a dense gauge network in the tropics. J. Atmos. Oceanic Technol., 18 , 18101818.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., and Francis P. N. , 1995: Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol., 12 , 410414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, C., and Munk W. , 1954: Measurements of the roughness of the sea surface from photographs of the sun’s glitter. J. Opt. Soc. Amer., 144 , 838850.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., and Hogan R. J. , 2008: A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer. J. Geophys. Res., 113 , D07204. doi:10.1029/2007JD009000.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., Protat A. , Testud J. , Bouniol D. , Heymsfield A. J. , Bansemer A. , Brown P. R. A. , and Forbes R. M. , 2005: Statistical properties of the normalized ice particle size distribution. J. Geophys. Res., 110 , D10201. doi:10.1029/2004JD005405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donovan, D. P., Quante M. , Schlimme I. , and Macke A. , 2004: Use of equivalent spheres to model the relation between radar reflectivity and optical extinction of ice cloud particles. Appl. Opt., 43 , 49294940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ellingson, R. G., Ellis J. , and Fels S. , 1991: The intercomparison of radiation codes used in climate models: Long wave results. J. Geophys. Res., 96 , (D5). 89298953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiorino, S. T., and Smith E. A. , 2006: Critical assessment of microphysical assumptions within TRMM radiometer rain profile algorithm using satellite, aircraft, and surface datasets from KWAJEX. J. Appl. Meteor. Climatol., 45 , 754786.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freilich, M. H., and Vanhoff B. A. , 2003: The relationship between winds, surface roughness, and the radar backscatter at low incidence angles from TRMM precipitation measurements. J. Atmos. Oceanic Technol., 20 , 549562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haeffelin, M., and Coauthors, 2005: SIRTA, a ground-based atmospheric observatory for clouds and aerosol research. Ann. Geophys., 23 , 253275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Handwerker, J., and Miller M. A. , 2008: Intercomparison of measurements obtained by vertically pointing collocated 95 GHz and 35.5 GHz cloud radars. Proc. Fifth European Conference on Radar in Meteorology and Hydrology, Helsinki, Finland, Finish Meteorological Institute, P5.3. [Available online at http://erad2008.fmi.fi/proceedings/extended/erad2008-0124-extended.pdf].

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., Bansemer A. , and Twohy C. , 2007: Refinements to ice particle mass dimensional and terminal velocity relationships for ice clouds. Part I: Temperature dependence. J. Atmos. Sci., 64 , 10471067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., Mittermaier M. P. , and Illingworth A. J. , 2006: The retrieval of ice water content from radar reflectivity factor and temperature and its use in the evaluation of a mesoscale model. J. Appl. Meteor. Climatol., 45 , 301317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and Coauthors, 2007: Cloudnet: Continuous evaluation of cloud profiles in seven operational models using ground-based observations. Bull. Amer. Meteor. Soc., 88 , 883898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., Glasson K. , Cummings F. , Bird T. S. , Keeler J. , and Lutz J. , 1998: The BMRC/NCAR C-band polarimetric (C-POL) radar system. J. Atmos. Oceanic Technol., 15 , 871886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, M-J., Kulie M. S. , O’Dell C. , and Bennartz R. , 2007: Scattering of ice particles at microwave frequencies: A physically based parameterization. J. Appl. Meteor. Climatol., 46 , 615633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingsmill, D., and Coauthors, 2004: TRMM common microphysics products: A tool for evaluating spaceborne precipitation retrieval algorithms. J. Appl. Meteor., 43 , 15981618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., Tanelli S. , and Im E. , 2005: Second-order multiple-scattering theory associated with backscattering enhancement for a millimeter wavelength weather radar with a finite beam width. Radio Sci., 40 .doi:10.1029/2004RS003219.

    • Search Google Scholar
    • Export Citation
  • Lhermitte, R., 1990: Attenuation and scattering of millimeter wavelength radiation by clouds and precipitation. J. Atmos. Oceanic Technol., 7 , 464479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., and Coauthors, 2001: Retrieval of atmospheric attenuation using combined ground-based and airborne 95-GHz cloud radar measurements. J. Atmos. Oceanic Technol., 18 , 13451353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., Heymsfield G. M. , Tian L. , and Racette P. E. , 2005: Measurements of ocean surface backscattering using an airborne 95-GHz cloud radar—Implication for calibration of airborne and spaceborne W-band radars. J. Atmos. Oceanic Technol., 22 , 10331045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebe, H. J., Hufford G. A. , and Cotton M. G. , 1993: Propagation modeling of moist air and suspended water/ice particles below 1000 GHz. Proc. Electromagnetic Wave Propagation Panel Symp., Palma de Mallorca, Spain, Advisory Group for Aerospace Research and Development.

    • Search Google Scholar
    • Export Citation
  • Marzano, F. S., Roberti L. , Di Michele S. , Mugnai A. , and Tassa A. , 2003: Modeling of apparent radar reflectivity due to convective clouds at attenuating wavelengths. Radio Sci., 38 , 1002. doi:10.1029/2002RS002613.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2007: Modeling backscatter properties of snowfall at millimeter wavelengths. J. Atmos. Sci., 64 , 17271736.

  • May, P. T., Mather J. H. , Vaughan G. , Jakob C. , McFarquhar G. M. , Bower K. N. , and Mace G. G. , 2008: The Tropical Warm Pool International Cloud Experiment. Bull. Amer. Meteor. Soc., 89 , 629645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., Um J. , Freer M. , Baumgardner D. , Kok G. L. , and Mace G. , 2007: Importance of small ice crystals to cirrus properties: Observations from the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Geophys. Res. Lett., 34 , L13803. doi:10.1029/2007GL029865.

    • Search Google Scholar
    • Export Citation
  • Oguchi, T., 1983: Electromagnetic wave propagation and scattering in rain and other hydrometeors. Proc. IEEE, 71 , 10291078.

  • Okamoto, K., Kubokawa T. , Tamura A. , and Ushio T. , 2002: Long term trend of ocean surface normalized radar cross section observed by TRMM precipitation radar. Proc. Second Global Precipitation Mission (GPM) Int. Planning Workshop, Shinagawa, Japan, P11R. 9. [Available online at http://ams.confex.com/ams/pdfpapers/96443.pdf].

    • Search Google Scholar
    • Export Citation
  • Protat, A., and Coauthors, 2004: Le projet RALI: Combinaison d’un radar et d’un lidar pour l’étude des nuages faiblement précipitants. Météorologie, 47 , 2333.

    • Search Google Scholar
    • Export Citation
  • Protat, A., Delanoë J. , Bouniol D. , Heymsfield A. J. , Bansemer A. , and Brown P. , 2007: Evaluation of ice water content retrievals from cloud radar reflectivity and temperature using a large airborne in situ microphysical database. J. Appl. Meteor. Climatol., 46 , 557572.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Protat, A., Delanoë J. , Plana-Fattori A. , May P. , Bouniol D. , and O’Connor E. , 2009: The statistical properties of ice anvils and cirrus resulting from West African and Australian mesoscale convective systems. Quart. J. Roy. Meteor. Soc., in press.

    • Search Google Scholar
    • Export Citation
  • Redelsperger, J-L., and Coauthors, 2006: AMMA, une étude multidisciplinaire de la mousson ouest-africaine. Météorologie, 54 , 2232.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and Woodley W. L. , 2000: Deep convective clouds with sustained highly supercooled liquid water down to −37.5°C. Nature, 405 , 440442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., Woodley W. L. , Krauss T. W. , and Makitov V. , 2006: Aircraft microphysical documentation from cloud base to anvils of hailstorm feeder clouds in Argentina. J. Appl. Meteor. Climatol., 45 , 12611281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The Cloudsat mission and the A-train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83 , 17711790.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stith, J. L., Dye J. E. , Bansemer A. , Heymsfield A. J. , Grainger C. A. , Petersen W. A. , and Cifelli R. , 2002: Microphysical observations of tropical clouds. J. Appl. Meteor., 41 , 97117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stokes, G. M., and Schwartz S. E. , 1994: The Atmospheric Radiation Measurement (ARM) Program: Programmatic background and design of the Cloud and Radiation Test Bed. Bull. Amer. Meteor. Soc., 75 , 12011221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanelli, S., Durden S. L. , Im E. , Pak K. S. , Reinke D. G. , Partain P. , Haynes J. M. , and Marchand R. T. , 2008: Cloudsat’s Cloud Profiling Radar after 2 years in orbit: Performance, external calibration, and processing. IEEE Trans. Geosci. Remote Sens., 46 , 35603573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tinel, C., Testud J. , Pelon J. , Hogan R. J. , Protat A. , Delanoë J. , and Bouniol D. , 2005: The retrieval of ice-cloud properties from cloud radar and lidar synergy. J. Appl. Meteor., 44 , 860875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulaby, F. T., Moore R. K. , and Fung A. K. , 1981: Microwave Remote Sensing Fundamentals and Radiometry, Vol. 1, Microwave Remote Sensing: Active and Passive, Artech House, 456 pp.

  • Wang, Z., and Sassen K. , 2002: Cirrus cloud microphysical property retrieval using lidar and radar measurements. Part I: Algorithm description and comparison with in situ data. J. Appl. Meteor., 41 , 218229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weinman, J. A., and Kim M. J. , 2007: A simple model of the millimeter-wave scattering parameters of randomly oriented aggregates of finite cylindrical ice hydrometeors. J. Atmos. Sci., 64 , 634644.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J., 1972: Sea-surface slope and equilibrium wind-wave spectra. Phys. Fluids, 15 , 741747.

  • Wu, J., 1990: Mean square slopes of the wind distributed water surface, their magnitude, directionality and composition. Radio Sci., 25 , 3748.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 917 391 22
PDF Downloads 553 145 11