Multiparameter Raman Lidar Measurements for the Characterization of a Dry Stratospheric Intrusion Event

Paolo Di Girolamo Dipartimento di Ingegneria e Fisica dell’Ambiente, Università degli Studi della Basilicata, Potenza, Italy

Search for other papers by Paolo Di Girolamo in
Current site
Google Scholar
PubMed
Close
,
Donato Summa Dipartimento di Ingegneria e Fisica dell’Ambiente, Università degli Studi della Basilicata, Potenza, Italy

Search for other papers by Donato Summa in
Current site
Google Scholar
PubMed
Close
, and
Rossella Ferretti Dipartimento di Fisica-CETEMPS, Università degli Studi dell’Aquila, Coppito, L’Aquila, Italy

Search for other papers by Rossella Ferretti in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The University of Basilicata Raman lidar system (BASIL) is operational in Potenza, Italy, and it is capable of performing high-resolution and accurate measurements of atmospheric temperature and water vapor based on the application of the rotational and vibrational Raman lidar techniques in the ultraviolet region. BASIL was recently involved in the 2005 International Lindenberg campaign for Assessment of Humidity and Cloud Profiling Systems and Its Impact on High-Resolution Modeling (LAUNCH 2005) experiment held from 12 September to 31 October 2005. A thorough description of the technical characteristics, measurement capabilities, and performances of BASIL is given in this paper. Measurements were continuously run between 1 and 3 October 2005, covering a dry stratospheric intrusion episode associated with a tropopause folding event. The measurements in this paper represent the first simultaneous Raman lidar measurements of atmospheric temperature, water vapor mixing ratio, and thus relative humidity reported for an extensive observation period (32 h).

The use of water vapor to trace intruded stratospheric air allows the clear identification of a dry structure (∼1 km thick) originating in the stratosphere and descending in the free troposphere down to ∼3 km. A similar feature is present in the temperature field, with lower temperature values detected within the dry-air tongue. Relative humidity measurements reveal values as small as 0.5%–1% within the intruded air. The stratospheric origin of the observed dry layer has been verified by the application of a Lagrangian trajectory model. The subsidence of the intruding heavy dry air may be responsible for the gravity wave activity observed beneath the dry layer.

Lidar measurements have been compared with the output of both the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) and the European Centre for Medium-Range Weather Forecasts (ECMWF) global model. Comparisons in terms of water vapor reveal the capability of MM5 to reproduce the dynamical structures associated with the stratospheric intrusion episode and to simulate the deep penetration into the troposphere of the dry intruded layer. Moreover, lidar measurements of potential temperature are compared with MM5 output, whereas potential vorticities from both the ECMWF model and MM5 are compared with estimates obtained combining MM5 model vorticity and lidar measurements of potential temperature.

Corresponding author address: Dr. Paolo Di Girolamo, Viale dell’Ateneo Lucano n. 10, 85100 Potenza, Italy. Email: digirolamo@unibas.it

Abstract

The University of Basilicata Raman lidar system (BASIL) is operational in Potenza, Italy, and it is capable of performing high-resolution and accurate measurements of atmospheric temperature and water vapor based on the application of the rotational and vibrational Raman lidar techniques in the ultraviolet region. BASIL was recently involved in the 2005 International Lindenberg campaign for Assessment of Humidity and Cloud Profiling Systems and Its Impact on High-Resolution Modeling (LAUNCH 2005) experiment held from 12 September to 31 October 2005. A thorough description of the technical characteristics, measurement capabilities, and performances of BASIL is given in this paper. Measurements were continuously run between 1 and 3 October 2005, covering a dry stratospheric intrusion episode associated with a tropopause folding event. The measurements in this paper represent the first simultaneous Raman lidar measurements of atmospheric temperature, water vapor mixing ratio, and thus relative humidity reported for an extensive observation period (32 h).

The use of water vapor to trace intruded stratospheric air allows the clear identification of a dry structure (∼1 km thick) originating in the stratosphere and descending in the free troposphere down to ∼3 km. A similar feature is present in the temperature field, with lower temperature values detected within the dry-air tongue. Relative humidity measurements reveal values as small as 0.5%–1% within the intruded air. The stratospheric origin of the observed dry layer has been verified by the application of a Lagrangian trajectory model. The subsidence of the intruding heavy dry air may be responsible for the gravity wave activity observed beneath the dry layer.

Lidar measurements have been compared with the output of both the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) and the European Centre for Medium-Range Weather Forecasts (ECMWF) global model. Comparisons in terms of water vapor reveal the capability of MM5 to reproduce the dynamical structures associated with the stratospheric intrusion episode and to simulate the deep penetration into the troposphere of the dry intruded layer. Moreover, lidar measurements of potential temperature are compared with MM5 output, whereas potential vorticities from both the ECMWF model and MM5 are compared with estimates obtained combining MM5 model vorticity and lidar measurements of potential temperature.

Corresponding author address: Dr. Paolo Di Girolamo, Viale dell’Ateneo Lucano n. 10, 85100 Potenza, Italy. Email: digirolamo@unibas.it

Save
  • Appenzeller, C., and Davies H. C. , 1992: Structure of stratospheric intrusions into the troposphere. Nature, 358 , 570572.

  • Avila, G., Fernández J. M. , Maté B. , Tejeda G. , and Montero S. , 1999: Ro-vibrational Raman cross sections of water vapor in the OH stretching region. J. Mol. Spectrosc., 196 , 7792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrendt, A., 2005: Temperature measurements with lidar. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, Ed., Optical Sciences, Vol. 102, Springer, 273–305.

    • Search Google Scholar
    • Export Citation
  • Behrendt, A., and Reichardt J. , 2000: Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator. Appl. Opt., 39 , 13721378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bertin, F., Campistron B. , Caccia J. L. , and Wilson R. , 2001: Mixing processes in the tropopause folding observed by a network of ST radar and lidar. Ann. Geophys., 19 , 953963.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brewer, A. M., 1949: Evidence for a world circulation provided by the measurements of helium and water vapor distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75 , 351363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cristofanelli, P., and Coauthors, 2003: Stratosphere-to-troposphere transport: A model and method evaluation. J. Geophys. Res., 108 , 8525. doi:10.1029/2002JD002600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Aulerio, P., Fierli F. , Congeduti F. , and Redaelli G. , 2004: Analysis of water vapor LIDAR measurements during the MAP campaign: Evidence of sub-structures of stratospheric intrusions. Atmos. Chem. Phys. Discuss., 4 , 83278355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Girolamo, P., Marchese R. , Whiteman D. N. , and Demoz B. B. , 2004: Rotational Raman Lidar measurements of atmospheric temperature in the UV. Geophys. Res. Lett., 31 , L01106. doi:10.1029/2003GL018342.

    • Search Google Scholar
    • Export Citation
  • Di Girolamo, P., Behrendt A. , and Wulfmeyer V. , 2006: Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar: Performance simulations. Appl. Opt., 45 , 24742494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Girolamo, P., Behrendt A. , Kiemle C. , Wulfmeyer V. , Bauer H. , Summa D. , Dörnbrack A. , and Ehret G. , 2008: Simulation of satellite water vapour lidar measurements: Performance assessment under real atmospheric conditions. Remote Sens. Environ., 112 , 15521568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donovan, D. P., Whiteway J. A. , and Carswell A. I. , 1993: Correction for nonlinear photon-counting effects in lidar systems. Appl. Opt., 32 , 67426753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., and Rolph G. D. , cited. 2003: HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) Model. NOAA Air Resources Laboratory. [Available online at http://www.arl.noaa.gov/ready/open/hysplit4.html].

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A non-hydrostatic version of the Penn State–NCAR Mesoscale Model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121 , 14931513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ertel, H., 1942: Ein Neuer hydrodynamischer Wirbelsatz. Meteorol. Z., 59 , 271281.

  • Ferretti, R., Paolucci T. , Zheng W. , Visconti G. , and Bonelli P. , 2000: Analyses of the precipitation pattern on the Alpine region using different cumulus convection parameterizations. J. Appl. Meteor., 39 , 182200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiorucci, I., and Coauthors, 2008: Measurements of low amounts of precipitable water vapor by millimeter wave spectroscopy: An intercomparison with radiosonde, Raman lidar, and Fourier transform infrared data. J. Geophys. Res., 113 , D14314. doi:10.1029/2008JD009831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flentje, H., Dörnbrack A. , Ehret G. , Fix A. , Kiemle C. , Poberaj G. , and Wirth M. , 2005: Water vapor heterogeneity related to tropopause folds over the North Atlantic revealed by airborne water vapor differential absorption lidar. J. Geophys. Res., 110 , D03115. doi:10.1029/2004JD004957.

    • Search Google Scholar
    • Export Citation
  • Forster, C., and Wirth V. , 2000: Radiative decay of idealized stratospheric filaments in the troposphere. J. Geophys. Res., 105 , 1016910184.

  • Galani, E., Balis D. , Zanis P. , Zerefos C. , Papayannis A. , Wernli H. , and Gerasopoulos E. , 2003: Observations of stratosphere-to-troposphere transport events over the eastern Mediterranean using a ground-based lidar system. J. Geophys. Res., 108 , 8527. doi:10.1029/2002JD002596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goering, M. A., Gallus W. A. Jr., Olsen M. A. , and Stanford J. L. , 2001: Role of stratospheric air in a severe weather event: Analysis of potential vorticity and total ozone. J. Geophys. Res., 106 , 1181311823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., Dudhia J. , and Stauffer D. R. , 1994: A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 128 pp.

    • Search Google Scholar
    • Export Citation
  • Griaznov, V., Veselovskii I. , Di Girolamo P. , Korenskii M. , and Summa D. , 2007: Spatial distribution of doubly scattered polarized laser radiation in the focal plane of a lidar receiver. Appl. Opt., 46 , 68216830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grzeschik, M., and Coauthors, 2008: Four-dimensional variational data analysis of water vapor Raman lidar data and their impact on mesoscale forecasts. J. Atmos. Oceanic Technol., 25 , 14371453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., Schaack T. K. , and Lenzen A. J. , 1991: Global objective tropopause analysis. Mon. Wea. Rev., 119 , 18161831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoinka, K. P., Richard E. , Poberaj G. , Busen R. , Caccia J-L. , Fix A. , and Mannstein H. , 2003: Analysis of a potential-vorticity streamer crossing the Alps during MAP IOP 15 on 6 November 1999. Quart. J. Roy. Meteor. Soc., 129 , 609632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., Haynes P. H. , McIntyre E. M. , Douglass A. R. , Rood R. B. , and Pfister L. , 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33 , 403439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IEC, 2001: Safety of laser products—Part 1: Equipment classification, requirements and user’s guide, ed. 1.2. International Electrotechnical Commission IEC 60825-1, 115 pp.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Fritsch J. M. , 1993: Convective parametrization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 24, Amer. Meteor. Soc., 165–170.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., and Lu C. , 2006: The generation of gravity waves in unbalanced jet streams. Geophysical Research Abstracts, Vol. 8, Abstract 10659. [Available online at http://www.cosis.net/abstracts/EGU06/10659/EGU06-J-10659-1.pdf].

    • Search Google Scholar
    • Export Citation
  • Massacand, A. C., Wernli H. , and Davies H. C. , 2001: Influence of upstream diabatic heating upon an Alpine event of heavy precipitation. Mon. Wea. Rev., 129 , 28222828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mattis, I., and Coauthors, 2002: Relative-humidity profiling in the troposphere with a Raman lidar. Appl. Opt., 41 , 64516462.

  • Mielke, B., 2005: Analog + photon counting. Licel Tech. Note, 10 pp. [Available online at http://www.licel.com/analogpc.pdf].

  • Neiman, P. J., Ralph F. M. , Weber R. L. , Uttal T. , Nance L. B. , and Levinson D. H. , 2001: Observations of nonclassical frontal propagation and frontally forced gravity waves adjacent to steep topography. Mon. Wea. Rev., 129 , 26332659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paolucci, T., Bernardini L. , Ferretti R. , and Visconti G. , 1999: Operational forecast using a high resolution limited area model. Nuovo Cimento, 22 , 727736.

    • Search Google Scholar
    • Export Citation
  • Reid, S. J., and Vaughan G. , 1991: Lamination in ozone profiles in the lower stratosphere. Quart. J. Roy. Meteor. Soc., 117 , 825844.

  • Reisner, J., Rasmussen R. , and Bruintjes R. , 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124 , 10711107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roelofs, G. J., Kentarchos A. S. , Trickl T. , Stohl A. , Collins W. J. , Crowther R. A. , and Hauglustaine D. , 2003: Intercomparison of tropospheric ozone models: Ozone transport in a complex tropopause folding event. J. Geophys. Res., 108 , 8529. doi:10.1029/2003JD003462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serafin, S., and Ferretti R. , 2007: Sensitivity of a mesoscale model to microphysical parameterizations in the MAP SOP events IOP2b and IOP8. J. Appl. Meteor. Climatol., 46 , 14381454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., 1980: Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and troposphere. J. Atmos. Sci., 37 , 9941004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stohl, A., and Trickl T. , 1999: A textbook example of long-range transport: Simultaneous observation of ozone maxima of stratospheric and North American origin in the free troposphere over Europe. J. Geophys. Res., 104 , 3044530462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stohl, A., and Coauthors, 2003: Stratosphere-troposphere exchange: A review, and what we have learned from STACCATO. J. Geophys. Res., 108 , 8516. doi:10.1029/2002JD002490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Troen, I. B., and Mahrt L. , 1986: A simple model of the atmospheric boundary layer: Sensitivity to surface evaporation. Bound.-Layer Meteor., 37 , 129148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., 2003a: Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations. Appl. Opt., 42 , 25712592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., 2003b: Examination of the traditional Raman lidar technique. II. Evaluating the ratios for water vapor and aerosols. Appl. Opt., 42 , 25932608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., Melfi S. H. , and Ferrare R. A. , 1992: Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere. Appl. Opt., 31 , 30683082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteman, D. N., and Coauthors, 2006: Raman lidar measurements during the International H2O Project. I. Instrumentation and analysis techniques. J. Atmos. Oceanic Technol., 23 , 157169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 2002: General meteorological standards and recommended practices. WMO Tech. Regulations WMO-No. 49, corrigendum.

  • Wulfmeyer, V., Bauer H. S. , Grzeschik M. , Behrendt A. , Vandenberghe F. , Browell E. V. , Ismail S. , and Ferrare R. A. , 2006: Four-dimensional variational assimilation of water vapor differential absorption lidar data: The first case study within IHOP 2002. Mon. Wea. Rev., 134 , 209230.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zanis, P., and Coauthors, 2003: Forecast, observation and modelling of a deep stratospheric intrusion event over Europe. Atmos. Chem. Phys., 3 , 763777.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., Koch S. E. , Davis C. A. , and Kaplan M. L. , 2001: Wavelet analysis and the governing dynamics of a large-amplitde mesoscae gravity-wave event along the East Coast of the United States. Quart. J. Roy. Meteor. Soc., 127 , 22092245.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 304 119 5
PDF Downloads 147 47 2